Skip to main content
Log in

Subcritical Connectivity and Some Exact Tail Exponents in High Dimensional Percolation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In high dimensional percolation at parameter \(p < p_c\), the one-arm probability \(\pi _p(n)\) is known to decay exponentially on scale \((p_c - p)^{-1/2}\). We show upper and lower bounds on the same exponential scale for the ratio \(\pi _p(n) / \pi _{p_c}(n)\), establishing a form of a hypothesis of scaling theory. As part of our study, we provide sharp estimates (with matching upper and lower bounds) for several quantities of interest at the critical probability \(p_c\). These include the tail behavior of volumes of, and chemical distances within, spanning clusters, along with the scaling of the two-point function at “mesoscopic distance” from the boundary of half-spaces. As a corollary, we obtain the tightness of the number of spanning clusters of a diameter n box on scale \(n^{d-6}\); this result complements a lower bound of Aizenman (Nucl Phys B 485(3):551–582, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No data was generated in the course of the research described in this manuscript.

Notes

  1. Here we use Aizenman’s [1] definition of “spanning cluster”; other natural definitions of this term exist.

  2. The letter “E” in the abbreviation “EREG” refers to “expectation”. Compare our definition to that of regularity appearing in [30, Section 4].

  3. The letter “S” in the abbreviation “SREG” stands for “shell”. The regularity condition is restricted to a shell to allow us to decouple portions of the cluster.

References

  1. Aizenman, M.: On the number of incipient spanning clusters. Nucl. Phys. B 485(3), 551–582 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1–2), 107–143 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Barsky, D.J., Aizenman, M.: Percolation critical exponents under the triangle condition. Ann. Probab. 1520–1536 (1991)

  6. Ben Arous, G., Cabezas, M., Fribergh, A.: Scaling limit for the ant in high-dimensional labyrinths. Commun. Pure Appl. Math. 72(4), 669–763 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borgs, C., Chayes, J.T., Kesten, H., Spencer, J.: Uniform boundedness of critical crossing probabilities implies hyperscaling. Random Struct. Algorithms 15(3–4), 368–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chatterjee, S., Hanson, J.: Restricted percolation critical exponents in high dimensions. Commun. Pure Appl. Math. 73(11), 2370–2429 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damron, M., Hanson, J., Sosoe, P.: Strict inequality for the chemical distance exponent in two-dimensional critical percolation. Commun. Pure Appl. Math. 74(4), 679–743 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343(2), 725–745 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fitzner, R., van der Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in \(d>10\). Electron. J. Probab. 22, 1–65 (2017)

  12. Garban, C., Pete, G., Schramm, O.: Pivotal, cluster, and interface measures for critical planar percolation. J. Am. Math. Soc. 26(4), 939–1024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grimmett, G.: Percolation. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Hammersley, J.M.: Percolation processes: lower bounds for the critical probability. Ann. Math. Stat. 28(3), 790–795 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hara, T.: Mean-field critical behaviour for correlation length for percolation in high dimensions. Probab. Theory Relat. Fields 86(3), 337–385 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hara, T.: Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36(2), 530–593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128(2), 333–391 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hara, T., van der Hofstad, R., Slade, G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31(1), 349–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heydenreich, M., van der Hofstad, R.: Random graph asymptotics on high-dimensional tori. Commun. Math. Phys. 270, 335–358 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Heydenreich, M., van der Hofstad, R.: Random graph asymptotics on high-dimensional Tori II: volume, diameter and mixing time. Probab. Theory Relat. Fields 149, 397–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heydenreich, M., van der Hofstad, R.: Progress in High-Dimensional Percolation and Random Graphs. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  22. Heydenreich, M., van der Hofstad, R., Hulshof, T.: High-dimensional incipient infinite clusters revisited. J. Stat. Phys. 155(5), 966–1025 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hutchcroft, T., Michta, E., Slade, G.: High-dimensional near-critical percolation and the torus plateau. arXiv:2107.12971 (2021)

  24. Kesten, H.: A scaling relation at criticality for 2d-percolation. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems, pp. 203–212. Springer (1987)

  25. Kesten, H.: Scaling relations for 2d-percolation. Commun. Math. Phys. 109(1), 109–156 (1987)

    Article  ADS  MATH  Google Scholar 

  26. Kesten, H., Zhang, Yu.: Strict inequalities for some critical exponents in two-dimensional percolation. J. Stat. Phys. 46(5–6), 1031–1055 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kesten, H., Zhang, Yu.: The tortuosity of occupied crossings of a box in critical percolation. J. Stat. Phys. 70(3–4), 599–611 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kiss, D.: Large deviation bounds for the volume of the largest cluster in 2d critical percolation. Electron. Commun. Probab. 19, 1–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178(3), 635 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kozma, G., Nachmias, A.: Arm exponents in high dimensional percolation. J. Am. Math. Soc. 24(2), 375–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lawler, G., Schramm, O., Werner, W., et al.: One-arm exponent for critical 2d percolation. Electron. J. Probab. 7, 1–13 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents, I: half-plane exponents. Acta Math. 187(2), 237–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponentso. Acta Math. 187(2), 275–308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lyons, R., Peres, Y.: Probability on Trees and Networks, vol. 42. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  35. Morrow, G.J., Zhang, Yu.: The sizes of the pioneering, lowest crossing and pivotal sites in critical percolation on the triangular lattice. Ann. Appl. Probab. 15(3), 1832–1886 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reeves, L., Sosoe, P.: An estimate for the radial chemical distance in \(2d\) critical percolation clusters pp. 1–27. arXiv:2001.07872 (2020)

  37. Sakai, A.: Mean-field behavior for the survival probability and the percolation point-to-surface connectivity. J. Stat. Phys. 117(1–2), 111–130 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schramm, O.: Conformally invariant scaling limits: an overview and a collection of problems. Sel. Works Oded Schramm 1161–1191 (2011)

  40. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Ser. I Math. 333(3), 239–244 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  41. van Batenburg, W.C.: The dimension of the incipient infinite cluster. Electron. Commun. Probab. 20, 1–10 (2015)

    MathSciNet  MATH  Google Scholar 

  42. van den Berg, J., Conijn, R.: On the size of the largest cluster in 2d critical percolation. Electron. Commun. Probab. 17 (2012)

  43. van der Hofstad, R., Járai, A.A.: The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114(3–4), 625–663 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. van der Hofstad, R., Sapozhnikov, A.: Cycle structure of percolation on high-dimensional tori. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 50, pp. 999–1027. Institut Henri Poincaré (2014)

  45. Werner, W.: Lectures on two-dimensional critical percolation. In: IAS-Park City Mathematical Sciences 16, pp. 297–360. Statistical Mechanics (2009)

Download references

Acknowledgements

The authors thank Akira Sakai for helpful discussions about the problem addressed in Theorem 6. The authors also thank two anonymous referees for extensive and helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Hanson.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by J. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of S.C. is supported in part by NSF grant DMS-2154564. The research of J.H. is supported in part by NSF grant DMS-1954257. The research of P.S. is supported in part by NSF grant DMS-1811093.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Hanson, J. & Sosoe, P. Subcritical Connectivity and Some Exact Tail Exponents in High Dimensional Percolation. Commun. Math. Phys. 403, 83–153 (2023). https://doi.org/10.1007/s00220-023-04759-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04759-w

Navigation