Skip to main content
Log in

Mean-field critical behaviour for percolation in high dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The triangle condition for percolation states that\(\sum\limits_{x,y} {\tau (0,x)\tau (0,y) \cdot \tau (y,0)} \) is finite at the critical point, where τ(x, y) is the probability that the sitesx andy are connected. We use an expansion related to the lace expansion for a self-avoiding walk to prove that the triangle condition is satisfied in two situations: (i) for nearest-neighbour independent bond percolation on thed-dimensional hypercubic lattice, ifd is sufficiently large, and (ii) in more than six dimensions for a class of “spread-out” models of independent bond percolation which are believed to be in the same universality class as the nearest-neighbour model. The class of models in (ii) includes the case where the bond occupation probability is constant for bonds of length less than some large number, and is zero otherwise. In the course of the proof an infrared bound is obtained. The triangle condition is known to imply that various critical exponents take their mean-field (Bethe lattice) values\((\gamma = \beta = 1,\delta = \Delta _t = 2, t\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } 2)\) and that the percolation density is continuous at the critical point. We also prove thatv 2 in (i) and (ii), wherev 2 is the critical exponent for the correlation length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M.: Geometric analysis of φ4 fields and Ising models, Parts I and II. Commun. Math. Phys.86, 1–48 (1982)

    Article  Google Scholar 

  2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys.108, 489–526 (1987)

    Article  Google Scholar 

  3. Aizenman, M., Fernández, R.: On the critical behaviour of the magnetization in high dimensional Ising models. J. Stat. Phys.44, 393–454 (1986)

    Article  Google Scholar 

  4. Aizenman, M., Graham, R.: On the renormalized coupling constant and the susceptibility in λφ 4d field theory and the Ising model in four dimensions. Nucl. Phys. B225 [FS9], 261–288 (1983)

    Article  Google Scholar 

  5. Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun. Math. Phys.111, 505–531 (1987)

    Article  Google Scholar 

  6. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behaviour in percolation models. J. Stat. Phys.36, 107–143 (1984)

    Article  Google Scholar 

  7. Aizenman, M., Simon, B.: Local Ward identities and the decay of correlations in ferromagnets. Commun. Math. Phys.77, 137–143 (1980)

    Article  Google Scholar 

  8. Barsky, D.J., Aizenman, M.: Percolation critical exponents under the triangle condition. Preprint (1988)

  9. van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability, J. Appl. Prob.22, 556–569 (1985)

    Google Scholar 

  10. Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Camb. Phil. Soc.53, 629–641 (1957)

    Google Scholar 

  11. Brydges, D.C., Fröhlich, J., Sokal, A.D.: A new proof of the existence and nontriviality of the continuum φ 42 and φ 43 quantum field theories. Commun. Math. Phys.91, 141–186 (1983)

    Article  Google Scholar 

  12. Brydges, D.C., Spencer, T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys.97, 125–148 (1985)

    Article  Google Scholar 

  13. Chayes, J.T., Chayes, L.: On the upper critical dimension of Bernoulli percolation. Commun. Math. Phys.113, 27–48 (1987)

    Article  Google Scholar 

  14. Essam, J.W.: Percolation Theory. Rep. Prog. Phys.43, 833–912 (1980)

    Article  Google Scholar 

  15. Fröhlich, J.: On the triviality of φ 4d theories and the approach to the critical point in\(d\mathop > \limits_{( = )} 4\) dimensions. Nucl. Phys. B200 [FS4], 281–296 (1982)

    Article  Google Scholar 

  16. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys.50, 79–95 (1976)

    Article  Google Scholar 

  17. Grimmett, G.: Percolation, Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  18. Hammersley, J.M.: Percolation processes. Lower bounds for the critical probability. Ann. Math. Statist.28, 790–795 (1957)

    Google Scholar 

  19. Hammersley, J.M.: Bornes supérieures de la probabilité critique dans un processus de filtration. In: Le Calcul des Probabilités et ses Applications 17–37 CNRS Paris (1959)

    Google Scholar 

  20. Hara, T.: Mean field critical behaviour of correlation length for percolation in high dimensions. Preprint (1989)

  21. Hara, T., Slade, G.: On the upper critical dimension of lattice trees and lattice animals. Submitted to J. Stat. Phys.

  22. Hara, T., Slade, G.: Unpublished

  23. Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys.4, 216–288 (1963)

    Article  Google Scholar 

  24. Kesten, H.: Percolation theory and first passage percolation. Ann. Probab.15, 1231–1271 (1987)

    Google Scholar 

  25. Lawler, G.: The infinite self-avoiding walk in high dimensions. To appear in Ann. Probab. (1989)

  26. Lebowitz, J.L., Penrose, O.: Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition. J. Math. Phys.7, 98–113 (1966)

    Article  Google Scholar 

  27. Menshikov, M.V., Molchanov, S.A., Sidorenko, A.F.: Percolation theory and some applications, Itogi Nauki i Tekhniki (Series of Probability Theory, Mathematical Statistics, Theoretical Cybernetics)24, 53–110 (1986). English translation. J. Soviet Math.42, 1766–1810 (1988)

    Google Scholar 

  28. Nguyen, B.G.: Gap exponents for percolation processes with triangle condition. J. Stat. Phys.49, 235–243 (1987)

    Article  Google Scholar 

  29. Park, Y.M.: Direct estimates on intersection probabilities of random walks. To appear in J. Stat. Phys.

  30. Russo, L.: On the critical percolation probabilities. Z. Wahrsch. Verw. Gebiete.56, 229–237 (1981)

    Article  Google Scholar 

  31. Slade, G.: The diffusion of self-avoiding random walk in high dimensions. Commun. Math. Phys.110, 661–683 (1987)

    Article  Google Scholar 

  32. Slade, G.: The scaling limit of self-avoiding random walk in high dimensions. Ann. Probab.17, 91–107 (1989)

    Google Scholar 

  33. Slade, G.: Convergence of self-avoiding random walk to Brownian motion in high dimensions. J. Phys. A: Math. Gen.21, L417-L420 (1988)

    Article  Google Scholar 

  34. Slade, G.: The lace expansion and the upper critical dimension for percolation, Lectures notes from the A.M.S. Summer Seminar, Blacksburg, June 1989

  35. Sokal, A.D.: A rigorous inequality for the specific heat of an Ising or φ4 ferromagnet. Phys. Lett.71A, 451–453 (1979)

    Google Scholar 

  36. Sokal, A.D., Thomas, L.E.: Exponential convergence to equilibrium for a class of random walk models. J. Stat. Phys.54, 797–828 (1989)

    Article  Google Scholar 

  37. Stauffer, D.: Introduction to percolation theory. Taylor and Francis, London Philadelphia (1985)

    Google Scholar 

  38. Tasaki, H.: Hyperscaling inequalities for percolation. Commun. Math. Phys.113, 49–65 (1987)

    Article  Google Scholar 

  39. Tasaki, H.: Private communication

  40. Yang, W., Klein, D.: A note on the critical dimension for weakly self avoiding walks. Prob. Th. Rel. Fields79, 99–114 (1988)

    Article  Google Scholar 

  41. Ziff, R.M., Stell, G.: Critical behaviour in three-dimensional percolation: Is the percolation threshold a Lifshitz point? Preprint (1988)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Supported by the Nishina Memorial Foundation and NSF grant PHY-8896163. Address after September 1, 1989: Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA.

Supported by NSERC grant A9351.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, T., Slade, G. Mean-field critical behaviour for percolation in high dimensions. Commun.Math. Phys. 128, 333–391 (1990). https://doi.org/10.1007/BF02108785

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108785

Keywords

Navigation