Skip to main content
Log in

Advanced freezing point insights into regulatory role of antifreeze proteins, their fundamentals, and obstacles in food preservation

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Freezing, a technique extensively employed within the food industry, is considered to be among the most prevalent preservation methods. Conventional techniques of freezing have the potential to cause certain forms of quality degradation, such as harm to cellular structure, and heightened loss of moisture. Therefore, innovative techniques for freezing have been devised to mitigate the drawbacks. Certain naturally occurring biomaterials that possess environmentally friendly, sustainable, non-harmful, remarkably efficient properties and the freezing point regulators (such as antifreeze proteins) have been scientifically proven to manage the freezing and thawing cycle, thus demonstrating promising prospects for utilization in the realm of food and food-related sectors. The purpose of this review is to thoroughly investigate the advanced freezing methods, and the cryoprotective impact of antifreeze proteins (AFPs), emphasizing their function in the food freeze–thaw process. Moreover, this review highlights the advantages and challenges of AFP employment in food preservation. The characteristics of AFPs are derived from their ability to exhibit thermal hysteresis, alter the crystal morphology, and prevent the process of ice recrystallization. Hence, AFPs have been effectively utilized to maintain the quality of a diverse range of refrigerated and frozen food products as a potential cryoprotectant agent in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AFPs:

Antifreeze proteins

INPs:

Ice-nucleating proteins

IBPs:

Ice-binding proteins

T g :

Glass transition temperature

HPIF:

High-pressure-induced freezing

HPSF:

High-pressure shift freezing

HPAF:

High-pressure-assisted freezing

RF:

Radiofrequency radiation

SFG:

Sum frequency generation

THP:

Thermal hysteresis protein

AFGPs:

Antifreeze glycoproteins

HFP:

Hysteresis freezing point

IRI:

Ice recrystallization inhibition

IBS:

Ice-binding site

TBARS:

Thiobarbituric acid reactive substance

References

  1. Van der Sman RGM (2020) Impact of processing factors on quality of frozen vegetables and fruits. Food Eng Rev 12:399–420. https://doi.org/10.1007/s12393-020-09216-1

    Article  Google Scholar 

  2. Chen X, Shi X, Cai X, Yang F, Li L, Wu J et al (2021) Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Crit Rev Food Sci Nutr 61:3436–3449. https://doi.org/10.1080/10408398.2020.1798354

    Article  CAS  PubMed  Google Scholar 

  3. Nian L, Cao A, Cai (2020) Investigation of the antifreeze mechanism and effect on quality characteristics of largemouth bass (Micropterus salmoides) during F–T cycles by hAFP. Food Chem 325:126918. https://doi.org/10.1016/j.foodchem.2020.126918

    Article  CAS  PubMed  Google Scholar 

  4. Dalvi-Isfahan M, Jha PK, Tavakoli J, Daraei-Garmakhany A, Xanthakis E, LeBail A (2019) Review on identification, underlying mechanisms and evaluation of freezing damage. J Food Eng 255:50–60. https://doi.org/10.1016/j.jfoodeng.2019.03.011

    Article  CAS  Google Scholar 

  5. Zhang L, Zeng J, Gao H, Zhang K, Wang M (2022) Effects of different frozen storage conditions on the functional properties of wheat gluten protein in non-fermented dough. Food Sci Technol 42:e97821. https://doi.org/10.1590/fst.97821

    Article  Google Scholar 

  6. Zhang Y, Zhang Y, Ai Z, Zhang H (2020) Thermal, rheological properties and microstructure of hydrated gluten as influenced by antifreeze protein from oat (Avena sativa L.). J Cereal Sci 93:102934. https://doi.org/10.1016/j.jcs.2020.102934

    Article  CAS  Google Scholar 

  7. Song DH, Kim M, Jin ES, Sim DW, Won HS, Kim EK et al (2019) Cryoprotective effect of an antifreeze protein purified from Tenebrio molitor larvae on vegetables. Food Hydrocoll 94:585–591. https://doi.org/10.1016/j.foodhyd.2019.04.007

    Article  CAS  Google Scholar 

  8. Hu C, Xie J (2021) The effect of multiple freeze–thaw cycles on the microstructure and quality of trachurus murphyi. Foods 10:1–13. https://doi.org/10.3390/foods10061350

    Article  CAS  Google Scholar 

  9. Li D, Zhu Z, Sun DW (2018) Effects of freezing on cell structure of fresh cellular food materials: a review. Trends Food Sci Technol 75:46–55. https://doi.org/10.1016/j.tifs.2018.02.019

    Article  CAS  Google Scholar 

  10. Cheng L, Sun DW, Zhu Z, Zhang Z (2017) Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses. Crit Rev Food Sci Nutr 57:769–781. https://doi.org/10.1080/10408398.2015.1004569

    Article  PubMed  Google Scholar 

  11. Eskandari A, Leow TC, Rahman MBA, Oslan SN (2020) Antifreeze proteins and their practical utilization in industry, medicine, and agriculture. Biomolecules 10:1–18. https://doi.org/10.3390/biom10121649

    Article  CAS  Google Scholar 

  12. Rosa MS, Ferreira C, Provesi JG, Amante ER (2019) Effect of the antifreeze protein on the microstructure of strawberries (Fragaria ananassa Duch). Braz J Food Technol 22:e2018218. https://doi.org/10.1590/1981-6723.21818

    Article  CAS  Google Scholar 

  13. He Z, Liu K, Wang J (2018) Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Accounts of Chem Res 51:1082–1091. https://doi.org/10.1021/acs.accounts.7b00528

    Article  CAS  Google Scholar 

  14. Zhang Z, Liu X-Y (2018) Control of ice nucleation: freezing and antifreeze strategies. Chem Soc Rev 47:7116–7139. https://doi.org/10.1039/c8cs00626a

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Cheng L, Sun D-W, Zhu Z, Zhang Z (2017) Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses. Cri Rev Food Sci Nutr 57:769–781. https://doi.org/10.1080/10408398.2015.1004569

    Article  Google Scholar 

  16. Lee S-J, Kim HJ, Cheong SH, Kim Y-S, Kim S-E, Hwang J-W, Lee J-S, Moon S-H, Jeon B-T, Park P-J (2015) Antioxidative effect of recombinant ice-binding protein (rLeIBP) from Arctic yeast Glaciozyma sp. on lipid peroxidation of Korean beef. Process Biochem 50:2099–2104

    Article  CAS  Google Scholar 

  17. Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H, Qi X (2018) Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality. Food Sci Technol 96:543–550. https://doi.org/10.1016/j.lwt.2018.05.074

    Article  CAS  Google Scholar 

  18. Provesi JG, Valentim Neto PA, Arisi ACM, Amante ER (2019) Extraction of antifreeze proteins from cold acclimated leaves of Drimys angustifolia and their application to star fruit (Averrhoa carambola) freezing. Food Chem 289:65–73. https://doi.org/10.1016/j.foodchem.2019.03.055

    Article  CAS  PubMed  Google Scholar 

  19. Sun D-W, Li B (2003) Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J Food Eng 57:337–345. https://doi.org/10.1016/S0260-8774(02)00354-0

    Article  Google Scholar 

  20. Kaale LD, Eikevik TM, Bardal T, Kjorsvik E, Nordtvedt TS (2013) The effect of cooling rates on the ice crystal growth in air-packed salmon fillets during superchilling and superchilled storage. Int J refrig 36:110–119. https://doi.org/10.1016/j.ijrefrig.2012.09.006

    Article  Google Scholar 

  21. Pandey R, Usui K, Livingstone RA, Fischer SA, Pfaendtner J, Backus EHG, Nagata Y, Fröhlich-Nowoisky J, Schmüser L, Mauri S, Scheel JF, Knopf DA, Pöschl U, Bonn M, Weidner T (2016) Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci Adv 2:e1501630

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Gertrudes A, Craveiro R, Eltayari Z, Reis RL, Paiva A, Duarte ARC (2017) How do animals survive extreme temperature amplitudes? The role of natural deep eutectic solvents. ACS Sustain Chem Eng 5:9542–9553. https://doi.org/10.1021/acssuschemeng.7b01707

    Article  CAS  Google Scholar 

  23. Duman JG (2015) Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 218:1846–1855. https://doi.org/10.1242/jeb.116905

    Article  PubMed  Google Scholar 

  24. Ustun NS, Turhan S (2020) Antifreeze proteins in foods. In: Ramløv H, Friis DS (eds) Antifreeze proteins. Springer, Berlin, pp 231–260

    Chapter  Google Scholar 

  25. Gün I, Aslı A, Asuman G (2020) Turkish journal of agriculture-food science and technology antifreeze proteins: an innovative agent for the prevention of foods antifriz proteinler: gıdaların korunmasında i?novatif bir ajan. Turk J Agric Food Sci Technol 8:1433–1439. https://doi.org/10.24925/turjaf.v8i7.1433-1439.2713

  26. Tian Y, Zhu Z, Sun DW (2020) Naturally sourced biosubstances for regulating freezing points in food researches: fundamentals, current applications and future trends. Trends Food Sci Technol 95:131–140. https://doi.org/10.1016/j.tifs.2019.11.009

    Article  CAS  Google Scholar 

  27. Białkowska A, Majewska E, Olczak A, Twarda-clapa A (2020) Ice binding proteins: diverse biological roles and applications in different types of industry. Biomolecules 10:274. https://doi.org/10.3390/biom10020274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kontogiorgos V, Goff HD, Kasapis S (2008) Effect of aging and ice-structuring proteins on the physical properties of frozen flour-water mixtures. Food Hydrocolloids 22:1135–1147. https://doi.org/10.1016/j.foodhyd.2007.06.005

    Article  CAS  Google Scholar 

  29. Ding X, Zhang H, Wang L, Qian H, Qi X, Xiao J (2015) Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze–thaw cycles. Food Hydrocoll 47:32–40. https://doi.org/10.3390/foods9111698

    Article  CAS  Google Scholar 

  30. Provesi JG, Amante ER (2015) Revis~ao: proteínas anticongelantes - Uma tecnologia emergente para o congelamento de alimentos. Braz J Food Technol 18:2–13. https://doi.org/10.1590/1981-6723.7714

    Article  Google Scholar 

  31. Kong CHZ, Hamid N, Liu T, Sarojini V (2016) Effect of antifreeze peptide pretreatment on ice crystal size, drip loss, texture, and volatile compounds of frozen carrots. J Agric Food Chem 64:4327–4335. https://doi.org/10.1021/acs.jafc.6b00046

    Article  CAS  PubMed  Google Scholar 

  32. Chen X, Wu J, Cai X, Wang S (2021) Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Compr Rev Food Sci Food Saf 20:542–562. https://doi.org/10.1111/1541-4337.12655

    Article  CAS  PubMed  Google Scholar 

  33. Zhu Z, Zhou Q, Sun DW (2019) Measuring and controlling ice crystallization in frozen foods: a review of recent developments. Trends Food Sci Technol 90:13–25. https://doi.org/10.1016/j.tifs.2019.05.012

    Article  CAS  Google Scholar 

  34. Calderara M, Deorsola FA, Bensaid S, Fino D, Russo N, Geobaldo F (2016) Role of ice structuring proteins on freezing–thawing cycles of pasta sauces. J Food Sci Technol 53:4216–4223. https://doi.org/10.1007/s13197-016-2409-3

  35. Kaur M, Kumar M (2019) An innovation in magnetic field assisted freezing of perishable fruits and vegetables: a review. Food Rev Int 36:761–780. https://doi.org/10.1080/87559129.2019.1683746

    Article  CAS  Google Scholar 

  36. Lertamondeeraek K, Jittanit W (2019) The freezing of rice products in box containers: temperature profile prediction, model validation and physical characteristics. Int J Food Eng 15:20180158

    Article  Google Scholar 

  37. Zhan X, Zhu Z, Sun D-W (2018) Effects of pretreatments on quality attributes of long-term deep frozen storage of vegetables: a review. Crit Rev Food Sci Nutr 59:743–757. https://doi.org/10.1080/10408398.2018.1496900

    Article  CAS  PubMed  Google Scholar 

  38. Cevoli C, Fabbri A, Tylewicz U, Rocculi P (2018) Finite element model to study the thawing of packed frozen vegetables as in-fluenced by working environment temperature. Biosyst Eng 170:1–11. https://doi.org/10.1016/j.biosystemseng.2018.03.005

    Article  Google Scholar 

  39. Mulot V, Benkhelifa H, Pathier D, Ndoye FT, Flick D (2019) Experimental and numerical characterization of food dehydration during freezing. J Food Eng 263:13–24. https://doi.org/10.1016/j.jfoodeng.2019.05.009

    Article  CAS  Google Scholar 

  40. Vorobiev E, Lebovka N (2022) Processing of foods and biomass feedstocks by pulsed electric energy. Springer, Berlin, pp 179–207

    Google Scholar 

  41. Kiani H, Zheng L, Sun D-W (2014) Ultrasonic assistance for food freezing. In: Emerging technologies for food processing. Elsevier, Amsterdam, pp 495–513

  42. Cheng X-F, Zhang M, Adhikari B, Islam N, Xu BG (2014) Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. Int J Refrig 44:49–55. https://doi.org/10.1016/J.IJREFRIG.2014.04.017

    Article  Google Scholar 

  43. Otero L, Rodríguez AC, Sanz PD (2020) Effect of the frequency of weak oscillating magnetic fields on supercooling and freezing kinetics of pure water and 0.9% NaCl solutions. J Food Eng 273:109822. https://doi.org/10.1016/j.jfoodeng.2019.109822

  44. Alabi KP, Zhu Z, Sun D-W (2020) Transport phenomena and their effect on microstructure of frozen fruits and vegetables. Trends Food Sci Technol 101:63–72. https://doi.org/10.1016/j.tifs.2020.04.016

    Article  CAS  Google Scholar 

  45. Sun Q, Sun F, Xia X, Xu H, Kong B (2019) The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage. Ultrason Sonochem 51:281–291. https://doi.org/10.1016/j.ultsonch.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  46. Tian Y, Li D, Luo W, Zhu Z, Li W, Qian Z, Li G, Sun DW (2020) Rapid freezing using atomized liquid nitrogen spray fol-lowed by frozen storage below glass transition temperature for Cordyceps sinensis preservation: quality attributes and storage stability. LWT 123:109066. https://doi.org/10.1016/j.lwt.2020.109066

    Article  CAS  Google Scholar 

  47. Zhao Y, Takhar PS (2017) Freezing of foods: mathematical and experimental aspects. Food Eng Rev 9:1–12

    Article  CAS  Google Scholar 

  48. Wu X-F, Zhang M, Adhikari B, Sun J (2017) Recent developments in novel freezing and thawing technologies applied to foods. Crit Rev Food Sci Nutr 57:3620–3631. https://doi.org/10.1080/10408398.2015.1132670

    Article  CAS  PubMed  Google Scholar 

  49. Cao X, Zhang F, Zhao D, Zhu D, Li J (2018) Effects of freezing conditions on quality changes in blueberries. J Sci Food Agric 98:4673–4679. https://doi.org/10.1002/jsfa.9000

    Article  CAS  PubMed  Google Scholar 

  50. Tang J, Shao S, Tian C (2020) Effects of the magnetic field on the freezing process of blueberry. Int J Refrig 113:288–295. https://doi.org/10.1016/j.ijrefrig.2019.12.022

    Article  Google Scholar 

  51. Tian Y, Zhang Z, Zhu Z, Sun D-W (2021) Effects of nano-bubbles and constant/variable-frequency ultrasound-assisted freezing on freezing behaviour of viscous food model systems. J Food Eng 292:110284. https://doi.org/10.1016/j.jfoodeng.2020.110284

    Article  CAS  Google Scholar 

  52. Fernández P, Otero L, Guignon B, Sanz P (2006) High-pressure shift freezing versus high-pressure assisted freezing: effects on the microstructure of a food model. Food Hydrocoll 20:510–522. https://doi.org/10.1016/j.foodhyd.2005.04.004

    Article  CAS  Google Scholar 

  53. Realini CE, Guardia MD, Garriga M, Perez-Juan M, Arnau J (2011) High pressure and freezing temperature effect on quality and microbial inactivation of cured pork carpaccio. Meat Soc 88:542–547. https://doi.org/10.1016/j.meatsci.2011.02.008

    Article  CAS  Google Scholar 

  54. LeBail A, Chevalier D, Mussa DM, Ghoul M (2002) High pressure freezing and thawing of foods: a review. Int J Refrig 25:504–513. https://doi.org/10.1016/S0140-7007(01)00030-5

    Article  CAS  Google Scholar 

  55. Mok JH, Choi W, Park SH, Lee SH, Jun S (2015) Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. Int J Refrig 50:137–145. https://doi.org/10.1016/j.ijrefrig.2014.10.025

    Article  CAS  Google Scholar 

  56. James C, Purnell G, James SJ (2015) A review of novel and innovative food freezing technologies. Food Bioproc Tech 8:1616–1634. https://doi.org/10.1007/s11947-015-1542-8

    Article  CAS  Google Scholar 

  57. Orlowska M, Havet M, Le-Bail A (2009) Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res Int 42:879–884. https://doi.org/10.1016/j.foodres.2009.03.015

    Article  Google Scholar 

  58. Xanthakis E, Le-Bail A, Havet M (2014) Chapter 30-freezing combined with electrical and magnetic disturbances. In: Emerging technologies for food processing. Academic Press, San Diego, pp 563–579. https://doi.org/10.1016/B978-0-12-411479-1.00030-9

  59. Hozumi T, Saito A, Okawa S, Eshita Y (2005) Effects of shapes of electrodes on freezing of supercooled water in electric freeze control. Int J Refr 28:389–395. https://doi.org/10.1016/j.ijrefrig.2004.08.009

    Article  CAS  Google Scholar 

  60. Woo M, Mujumdar A (2010) Effects of electric and magnetic field on freezing and possible relevance in freeze drying. Drying Tech 28:433–443. https://doi.org/10.1080/07373930903202077

    Article  CAS  Google Scholar 

  61. Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct 938:15–19. https://doi.org/10.1016/j.molstruc.2009.08.037

    Article  ADS  CAS  Google Scholar 

  62. Inaba H, Saitou T, Tozaki K-i, Hayashi H (2004) Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J Appl Phys 96:6127–6613. https://doi.org/10.1063/1.1803922

    Article  ADS  CAS  Google Scholar 

  63. Jackson TH, Ungan A, Critser JK, Gao D (1997) Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation. Cryobiology 34:363–372. https://doi.org/10.1006/cryo.1997.2016

    Article  CAS  PubMed  Google Scholar 

  64. Chaplin M (2013) Water structure and science. Available at http://www1.lsbu.ac.uk/water/. Accessed on 21 Nov 2016

  65. Xu B, Zhang M, Ma H (2017) Chapter 12-Food freezing assisted with ultrasound. In: Bermudez-Aguirre D (ed) Ultrasound: advances for food processing and preservation. Academic Press, London. https://doi.org/10.1016/B978-0-12-804581-7.00012-9

    Chapter  Google Scholar 

  66. Kiani H, Zhang Z, Sun D-W (2013) Effect of ultrasound irradiation on ice crystal size distribution in frozen agar gel samples. IFSET 18:126–131. https://doi.org/10.1016/j.ifset.2013.02.007

    Article  Google Scholar 

  67. Li B, Sun D-W (2002) Novel methods for rapid freezing and thawing of foods—a review. J Food Eng 54:175–182. https://doi.org/10.1016/S0260-8774(01)00209-6

    Article  Google Scholar 

  68. Zhang C, Zhang H, Wang L (2007) Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Res Int 40:763–769. https://doi.org/10.1016/j.foodres.2007.01.006

    Article  CAS  Google Scholar 

  69. Zhang C, Zhang H, Wang L, Guo X (2008) Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb. LWT Food Sci Tech 41:1029–1036. https://doi.org/10.1016/j.lwt.2007.07.010

    Article  CAS  Google Scholar 

  70. Yeh CM, Kao BY, Peng HJ (2009) Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. J Agric Food Chem 57:6216–6223. https://doi.org/10.1021/jf900924f

    Article  CAS  PubMed  Google Scholar 

  71. Soukoulis C, Fisk I (2014) Innovative ingredients and emerging technologies for controlling ice recrystallisation, texture and structure stability in frozen dairy desserts: a review. Crit Rev Food Sci Nutr 56:2543–2559. https://doi.org/10.1080/10408398.2013.876385

    Article  CAS  Google Scholar 

  72. O’Sullivan D, Murray BJ, Ross JF, Webb ME (2016) The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles. Atmos Chemi Phys 16:7879–7887. https://doi.org/10.5194/acp-16-7879-2016

    Article  ADS  CAS  Google Scholar 

  73. Bredow M, Tomalty HE, Smith L, Walker VK (2018) Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon. Plant Cell Environ 41:983–992. https://doi.org/10.1111/pce.12889

    Article  CAS  PubMed  Google Scholar 

  74. Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T (2017) Boreal pollen contains ice-nucleating as well as ice-binding “antifreeze” polysaccharides. Sci Rep 7:41890. https://doi.org/10.1038/srep41890

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Joly M, Attard E, Sancelme M, Deguillaume L, Guilbaud C, Morris CE, Amato P, Delort A-M (2013) Ice nucleation activity of bacteria isolated from cloud water. Atmos Environ 70:392–400. https://doi.org/10.5194/acp-13-5751-2013

    Article  ADS  CAS  Google Scholar 

  76. Kassmannhuber J, Rauscher M, Schoner L, Witte A, Lubitz W (2017) Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts. Bioengineered 8:488–500. https://doi.org/10.1080/21655979.2017.1284712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pummer BG, Budke C, Augustin-Bauditz S, Niedermeier D, Felgitsch L, Kampf CJ, Huber RG, Liedl KR et al (2015) Ice nucleation by water-soluble macromolecules. Atmos Chem Phys 15:4077–4091. https://doi.org/10.5194/acp-15-4077-2015

    Article  ADS  CAS  Google Scholar 

  78. Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854. https://doi.org/10.5194/acp-12-9817-2012

    Article  ADS  CAS  Google Scholar 

  79. Sahyoun M, Wex H, Gosewinkel U, Šantl-Temkiv T, Nielsen NW, Finster K, Sørensen JH, Stratmann F, Korsholm US (2016) On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate. Atmos Environ 139:230–240

    Article  ADS  CAS  Google Scholar 

  80. Suzuki S, Fukuda S, Fukushi Y, Arakawa K (2017) Screening of plant resources with anti-ice nucleation activity for frost damage prevention. Biosci Biotechnol Biochem 81:2090–2097. https://doi.org/10.1080/09168451.2017.1373587

    Article  CAS  PubMed  Google Scholar 

  81. Hill TCJ, DeMott PJ, Tobo Y, Fröhlich-Nowoisky J, Moffett BF, Franc GD, Kreidenweis SM (2016) Sources of organic ice nucleating particles in soils. Atmos Chem Phys 16:7195–7211

    Article  ADS  CAS  Google Scholar 

  82. Hudait A, Odendahl N, Qiu Y, Paesani F, Molinero V (2018) Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs. J Am Chem Soc 140:4905–4912. https://doi.org/10.1021/jacs.8b01246

    Article  CAS  PubMed  Google Scholar 

  83. Ding X, Li T, Zhang H, Guan C, Qian J, Zhou X (2020) Effect of barley antifreeze protein on dough and bread during freezing and freeze–thaw cycles. Foods 9:1698. https://doi.org/10.3390/foods9111698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramløv H, Johnsen JL (2014) Controlling the freezing process with antifreeze proteins. Chapter 29, 2nd edn. Elsevier, London, pp 539–562. https://doi.org/10.1016/B978-0-12-411479-1.00029-2

    Book  Google Scholar 

  85. Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV (2021) Antifreeze proteins (Afp): properties, sources and applications—a review. Int J Biol Macromol 189:292–305. https://doi.org/10.1016/j.ijbiomac.2021.08.105

    Article  CAS  PubMed  Google Scholar 

  86. Kristiansen E, In: Ramløv H, Friis DS, (eds) (2020) Characteristics of antifreeze proteins, 1st edn. Springer, Berlin

    Google Scholar 

  87. Xiang H, Yang X, Ke L, Hu Y (2020) The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 153:661–675. https://doi.org/10.1016/j.ijbiomac.2020.03.040

    Article  CAS  PubMed  Google Scholar 

  88. Boonsupthip W, Lee TC (2003) Application of antifreeze protein for food preservation: effect of Type III antifreeze protein for preservation of gel-forming of frozen and chilled actomyosin. J Food Sci 68:1804–1809. https://doi.org/10.1111/j.1365-2621.2003.tb12333.x

    Article  CAS  Google Scholar 

  89. Cao C, Xiao Z, Ge C, Wu Y (2021) Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems—a comprehensive review. Crit Rev Food Sci Nutr 62:8703–8727. https://doi.org/10.1080/10408398.2021.1931807

    Article  CAS  PubMed  Google Scholar 

  90. Tejo BA, Asmawi AA, Rahman MBA (2020) Antifreeze proteins: characteristics and potential applications. Makara J Sci 24:8

    Google Scholar 

  91. Damodaran S, Wang SY (2017) Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocolloids 70:46–56. https://doi.org/10.1016/j.foodhyd.2017.03.029

    Article  CAS  Google Scholar 

  92. Griffith M, Ewart KV (2023) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–402

    Article  Google Scholar 

  93. Gruneberg AK, Graham LA, Eves R, Agrawal P, Oleschuk RD, Davies PL (2021) Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology 99:28–39. https://doi.org/10.1016/j.cryobiol.2021.01.017

    Article  CAS  PubMed  Google Scholar 

  94. Khan NMMU, Arai T, Tsuda S, Kondo H (2021) Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-021-85559-x

    Article  CAS  Google Scholar 

  95. Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H et al (2018) Comparative study on the cryoprotective effects of three recombinant antifreeze proteins from Pichia pastoris GS115 on hydrated gluten proteins during freezing. J Agric Food Chem 66:6151–6161. https://doi.org/10.1021/acs.jafc.8b00910

    Article  CAS  PubMed  Google Scholar 

  96. Das A, Chauhan G, Satyaprakash K, Tomar S (2018) Application of antifreeze proteins in foods of animal origin—a review. Int J Livest Res 8:70. https://doi.org/10.5455/ijlr.20180303024006

    Article  Google Scholar 

  97. Graham B, Fayter AE, Houston JE, Evans RC, Gibson MI (2018) Facially amphipathic glycopolymers inhibit ice recrystallization. J Am Chem Soc 140:5682–5685. https://doi.org/10.1021/jacs.8b02066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Meister K, Moll CJ, Chakraborty S, Jana B, DeVries AL, Ramløv H et al (2019) Molecular structure of a hyperactive antifreeze protein adsorbed to ice. J Chem Phys 150:131101. https://doi.org/10.1063/1.5090589

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Chattopadhyay MK (2007) Antifreeze proteins of bacteria. Resonance 12:25–30. https://doi.org/10.1007/s12045-007-0122-2

    Article  CAS  Google Scholar 

  100. Kumari S, Muthachikavil AV, Tiwari JK, Punnathanam SN (2020) Computational study of differences between antifreeze activity of type-III antifreeze protein from ocean pout and its mutant. Langmuir 36:2439–2448. https://doi.org/10.1021/acs.langmuir.0c00065

    Article  CAS  PubMed  Google Scholar 

  101. Gandini E, Sironi M, Pieraccini S (2020) Modelling of short synthetic antifreeze peptides: insights into ice-pinning mechanism. J Mol Graph Model 100:107680. https://doi.org/10.1016/j.jmgm.2020.107680

    Article  CAS  PubMed  Google Scholar 

  102. Jaczynski J, Tahergorabi R, Hunt AL, Park JW (2012) Safety and quality of frozen aquatic food products. In: Sun DW (ed) Handbook of frozen food processing and packaging, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, London, pp 343–385

    Google Scholar 

  103. Le Bail A, Tzia C, Giannou V (2012) Quality and safety of frozen bakery products. In: Sun DW (ed) Handbook of frozen food processing and packaging, 2nd edn. CRC Press, Boca Raton, pp 501–528

    Google Scholar 

  104. Shayanfar S, Chauhan OP, Toepfl S, Volker H (2013) The interaction of pulsed electric fields and texturizing—Antifreezing agents in quality retention of defrosted potato strips. Int J Food Sci Tech 48:1289–1295. https://doi.org/10.1111/ijfs.12089

    Article  CAS  Google Scholar 

  105. Shayanfar S, Chauhan OP, Toepfl S, Heinz V (2014) Pulsed electric field treatment prior to freezing carrot discs significantly maintains their initial quality parameters after thawing. Int J Food Sci Tech 49:1224–1230. https://doi.org/10.1111/ijfs.12421

    Article  CAS  Google Scholar 

  106. Phoon PY, Gomez F, Vicente A, Dejmek P (2008) Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J Food Eng 88:144–148. https://doi.org/10.1016/j.jfoodeng.2007.12.016

    Article  CAS  Google Scholar 

  107. Velickova E, Tylewicz U, Rosa MD, Winkelhausen E, Kuzmanova S, Galindo FG (2013) Effect of vacuum infused cryoprotectants on the freezing tolerance of strawberry tissues. LWT Food SciTech 52:146–150. https://doi.org/10.1016/j.lwt.2011.09.013

    Article  CAS  Google Scholar 

  108. Patist A, Zoerb H (2005) Preservation mechanisms of trehalose in food and biosystems. Colloids Surf B Biointerfaces 40:107–113. https://doi.org/10.1016/j.colsurfb.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  109. Osako K, Hossain MA, Kuwahara K, Nozaki Y (2005) Effect of trehalose on the gel-forming ability, state of water and myofibril denaturation of horse mackerel Trachurus japonicus surimi during frozen storage. Fisheries Sci 71:367–373. https://doi.org/10.1111/j.1444-2906.2005.00973.x

    Article  CAS  Google Scholar 

  110. Zhou A, Benjakul S, Pan K, Gong J, Liu X (2006) Cryoprotective effects of trehalose and sodium lactate on tilapia (Sarotherodon nilotica) surimi during frozen storage. Food Chem 96:96–103. https://doi.org/10.1016/j.foodchem.2005.02.013

    Article  CAS  Google Scholar 

  111. Pan J, Shen H, Luo Y (2010) Cryoprotective effects of trehalose on grass carp (Ctenopharyngodon idellus) surimi during frozen storage. J Food Process Preserv 34:715–727. https://doi.org/10.1111/j.1745-4549.2009.00388.x

    Article  CAS  Google Scholar 

  112. Kovačević D, Mastanjević K (2011) Cryoprotective effect of trehalose and maltose on washed and frozen stored beef meat. Czech J Food Sci 29:15–23. https://doi.org/10.17221/1042-CJFS

    Article  Google Scholar 

  113. Kovačević D, Mastanjević K (2014) Cryoprotective effect of trehalose on washed chicken meat. J Food Sci Tech 51:1006–1010. https://doi.org/10.1007/13197-011-0553-3

    Article  Google Scholar 

  114. Zhu S, Yu J, Chen X, Zhang Q, Cai X, Ding Y et al (2021) Dual cryoprotective strategies for ice-binding and stabilizing of frozen seafood: a review. Trends Food Sci Technol 111:223–232. https://doi.org/10.1016/j.tifs.2021.02.069

    Article  CAS  Google Scholar 

  115. Tan M, Lin Z, Zu Y, Zhu B, Cheng S (2018) Effect of multiple freeze–thaw cycles on the quality of instant sea cucumber: emphatically on water status of by LF-NMR and MRI. Food Res Int 109:65–71. https://doi.org/10.1016/j.foodres.2018.04.029

    Article  CAS  PubMed  Google Scholar 

  116. Cheng S, Wang X, Li R, Yang H, Wang H, Wang H et al (2019) Influence of multiple freeze–thaw cycles on quality characteristics of beef semimembranous muscle: with emphasis on water status and distribution by LF-NMR and MRI. Meat Sci 147:44–52. https://doi.org/10.1016/j.meatsci.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  117. Kashyap P, Kumar S (2022) Ice structuring protein extract of Hordeum vulgare var. dolma grain reduces drip loss and loss of soluble vitamin content in peas during frozen storage. Cryobiology 104:1–7. https://doi.org/10.1016/j.cryobiol.2021.11.178

    Article  CAS  PubMed  Google Scholar 

  118. Cai L, Nian L, Cao A, Zhang Y, Li X (2020) Effect of carboxymethyl chitosan magnetic nanoparticles plus herring antifreeze protein on conformation and oxidation of myofibrillar protein from red sea bream (Pagrosomus major) after freeze–thaw treatment. Food Bioprocess Technol 13:355–366. https://doi.org/10.1007/s11947-019-02384-x

    Article  CAS  Google Scholar 

  119. Crevel RWR, Cooper KJ, Poulsen LK, Hummelshoj L, Bindslev-Jensen C, Burks AW et al (2007) Lack of immunogenicity of ice structuring protein type III HPLC12 preparation administered by the oral route to human volunteers. Food Chem Toxicol 45:79–87

    Article  CAS  PubMed  Google Scholar 

  120. Derossi A, Iliceto A, De Pilli T, Severini C (2015) Application of vacuum impregnation with anti-freezing proteins to improve the quality of truffles. J Food Sci Technol 52:7200–7208. https://doi.org/10.1007/s13197-015-1843-y

    Article  CAS  Google Scholar 

  121. Li F, Du X, Ren Y, Kong B, Wang B, Xia X et al (2021) Impact of ice structuring protein on myofibrillar protein aggregation behavior and structural property of quick-frozen patty during frozen storage. Int J Biol Macromol 178:136–142. https://doi.org/10.1016/j.ijbiomac.2021.02.158

    Article  CAS  PubMed  Google Scholar 

  122. Du X, Li H, Dong C, Ren Y, Pan N, Kong B et al (2021) Effect of ice structuring protein on the microstructure and myofibrillar protein structure of mirror carp (Cyprinus carpio L.) induced by freeze–thaw processes. LWT Food Sci Technol 139:110570. https://doi.org/10.1016/j.lwt.2020.110570

    Article  CAS  Google Scholar 

  123. Kashyap P, Kumar S, Singh D (2020) Performance of antifreeze protein HrCHI4 from Hippophae rhamnoides in improving the structure and freshness of green beans upon cryopreservation. Food Chem 320:126599. https://doi.org/10.1016/j.foodchem.2020.126599

    Article  CAS  PubMed  Google Scholar 

  124. Liu M, Liang Y, Wang Y, Zhang H, Wu G, Wang L et al (2018) Effects of recombinant carrot antifreeze protein from Pichia pastoris GS115 on the physicochemical properties of hydrated gluten during freeze–thawed cycles. J Cereal Sci 83:245–251. https://doi.org/10.1016/j.jcs.2018.08.016

    Article  CAS  Google Scholar 

  125. Jia C, Huang W, Wu C, Zhong J, Rayas-Duarte P, Guo C (2012) Frozen bread dough properties modified by thermostable ice structuring proteins extract from Chinese privet (Ligustrum vulgare) leaves. Cereal Chem 89:162–167. https://doi.org/10.1094/CCHEM-11-11-0136

    Article  CAS  Google Scholar 

  126. Liu DK, Xu CC, Guo CX, Zhang XX (2020) Sub-zero temperature preservation of fruits and vegetables: a review. J Food Eng 275:109881. https://doi.org/10.1016/j.jfoodeng.2019.109881

    Article  Google Scholar 

  127. Arai N, Fujiwara A, Wakuda M, Fujimoto T, Nambu Y, Ishii T et al (2021) Antifreeze effect of Enoki mushroom extract on the quality preservation of frozen whipped cream. J Food Eng 291:110285. https://doi.org/10.1016/j.jfoodeng.2020.110285

    Article  CAS  Google Scholar 

  128. Zhang Y, Zhang H, Wang L, Qian H, Qi X (2015) Extraction of oat (Avena sativa L.) antifreeze proteins and evaluation of their effects on frozen dough and steamed bread. Food Bioprocess Technol 8:2066–2075. https://doi.org/10.1007/s11947-015-1560-6

    Article  CAS  Google Scholar 

  129. Panadero J, Randez-Gil F, Prieto JA (2005) Heterologous expression of type I antifreeze peptide GS-5 in baker’s yeast increases freeze tolerance and provides enhanced gas production in frozen dough. J Agric Food Chem 53:9966–9970. https://doi.org/10.1021/jf0515577

    Article  CAS  PubMed  Google Scholar 

  130. Luo W, Sun DW, Zhu Z, Wang QJ (2018) Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality—a review of effective methods. Trends Food Sci Technol 72:25–33. https://doi.org/10.1016/j.tifs.2017.11.017

    Article  CAS  Google Scholar 

  131. Xu K, Niu Q, Zhao H, Du Y, Guo L, Jiang Y (2018) Sequencing and expression characterization of antifreeze protein maxi-like in Apis cerana cerana. J Insect Sci 18:1–11. https://doi.org/10.1093/jisesa%2Fiex109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Egelandsdal B, Abie SM, Bjarnadottir S, Zhu H, Kolstad H, Bjerke F et al (2019) Detectability of the degree of freeze damage in meat depends on analytic-tool selection. Meat Sci 152:8–19. https://doi.org/10.1016/j.meatsci.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  133. Lan W, Hu X, Sun X, Zhang X, Xie J (2020) Effect of the number of freeze–thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vannamei): an emphasis on moisture migration and microstructure by LF-NMR and SEM. Aquac Fish 5:193–200. https://doi.org/10.1016/j.aaf.2019.05.007

    Article  Google Scholar 

  134. Wang B, Li F, Pan N, Kong B, Xia X (2021) Effect of ice structuring protein on the quality of quick-frozen patties subjected to multiple freeze–thaw cycles. Meat Sci 172:108335. https://doi.org/10.1016/j.meatsci.2020.108335

    Article  CAS  PubMed  Google Scholar 

  135. Tan M, Mei J, Xie J (2021) The formation and control of ice crystal and its impact on the quality of frozen aquatic products: a review. Crystals 11:1–17. https://doi.org/10.3390/cryst11010068

    Article  CAS  Google Scholar 

  136. Du X, Chang P, Tian J, Kong B, Sun F, Xia X (2020) Effect of ice structuring protein on the quality, thermal stability and oxidation of mirror carp (Cyprinus carpio L.) induced by freeze–thaw cycles. LWT Food Sci Technol 124:109140. https://doi.org/10.1016/j.lwt.2020.109140

    Article  CAS  Google Scholar 

  137. Jan N, Qazi HA, Raja V, John R (2019) Proteomics: a tool to decipher cold tolerance. Theor Exp Plant Physiol 31:183–213. https://doi.org/10.1007/s40626-019-00140-2

    Article  CAS  Google Scholar 

  138. Han S, Kannan M, Lee W, Ho S, Kang S (2020) Efficacy of antifreeze proteins from Clupea harangues and Anarhichas minor on gas hydrate inhibition via cell surface display. Chem Eng Sci 215:115470. https://doi.org/10.1016/j.ces.2020.115470

    Article  CAS  Google Scholar 

  139. Tab MM, Hashim NHF, Najimudin N, Mahadi NM, Bakar FDA, Murad AMA (2017) Large-scale production of Glaciozyma Antarctica antifreeze protein 1 (Afp1) by fed-batch fermentation of Pichia pastoris. Food Res Int 43:133–141. https://doi.org/10.1007/s13369-017-2738-1

    Article  CAS  Google Scholar 

  140. Rojas R, Arostica M, Carvajal-rondanelli P, Albericio F, Guzman F, Cardenas C (2022) Relationship between type II polyproline helix secondary structure and thermal hysteresis activity of short homopeptides. Electron J Biotechnol 59:62–73

    Article  CAS  Google Scholar 

  141. Liu X, Pan Y, Liu F, He Y, Zhu Q, Liu Z et al (2021) A review of the material characteristics, antifreeze mechanisms, and applications of cryoprotectants (CPAs). J Nanomater 2021:9990709. https://doi.org/10.1155/2021/9990709

    Article  CAS  Google Scholar 

  142. Eslami M, Shirali R, Zade H, Takalloo Z, Mahdevar G, Emamjomeh A et al (2018) afpCOOL: a tool for antifreeze protein prediction. Heliyon 4:e00705. https://doi.org/10.1016/j.heliyon.2018.e00705

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the Enzyme and Microbial Technology Research Center (EMTech), especially Prof. Dr. Raja Noor Zaliha Raja Abd. Rahman, Prof. Dato’ Dr. Abu Bakar Salleh for the constructive comments and help in the completion of this manuscript.

Funding

This project was supported by the Prototype Research Grant Scheme (PRGS) from the Ministry of Higher Education (MoHE) Malaysia PRGS/1/2021/STG02/UPM/02/2 which was awarded to the last author (SNO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by AE, TCL, MBAR, and SNO. The first draft of the manuscript was written by AE and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Siti Nurbaya Oslan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or living animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, A., Leow, T.C., Rahman, M.B.A. et al. Advanced freezing point insights into regulatory role of antifreeze proteins, their fundamentals, and obstacles in food preservation. Eur Food Res Technol 250, 1103–1121 (2024). https://doi.org/10.1007/s00217-023-04449-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04449-w

Keywords

Navigation