Skip to main content

Advertisement

Log in

Isochoric Freezing and Its Emerging Applications in Food Preservation

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The preservation of foods at low temperatures is a well-established concept. While conventional methods of food freezing rely on the isobaric (constant pressure) approach, they often result in a series of irreversible changes that can significantly hamper the quality of frozen foods. In recent years, taking its roots from the biomedical industry, isochoric (constant volume) freezing is gaining both research and commercial interest as an effective method of food preservation. The focus of this review is to present the state of the art of isochoric freezing of foods, highlighting the underlying mechanisms that make it unique, and understanding its impact on food quality, considering reports published in the past decade. An exclusive section is dedicated to its non-food applications, and this work also provides insights into the costs and economics of the process. Importantly, as this is an emerging area, the review concludes by highlighting the challenges and provides perspectives on the directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. You Y, Kang T, Jun S (2020) Control of ice nucleation for subzero food preservation. Food Eng Rev. https://doi.org/10.1007/s12393-020-09211-6

    Article  Google Scholar 

  2. Muthukumarappan K, Marella C, Sunkesula V (2019) Food freezing technology. Handb Farm, Dairy Food Mach Eng 389–415. https://doi.org/10.1016/b978-0-12-814803-7.00015-4

  3. Rubinsky B, Perez PA, Carlson ME (2005) The thermodynamic principles of isochoric cryopreservation. Cryobiology 50:121–138. https://doi.org/10.1016/j.cryobiol.2004.12.002

    Article  PubMed  Google Scholar 

  4. Powell-Palm MJ, Rubinsky B (2019) A shift from the isobaric to the isochoric thermodynamic state can reduce energy consumption and augment temperature stability in frozen food storage. J Food Eng 251:1–10. https://doi.org/10.1016/j.jfoodeng.2019.02.001

    Article  CAS  Google Scholar 

  5. Lyu C, Nastase G, Ukpai G et al (2017) ­Isochoric refrigeration of food products. https://doi.org/10.7287/peerj.preprints.2740v1

  6. Preciado JA, Rubinsky B (2010) Isochoric preservation: a novel characterization method. Cryobiology 60:23–29. https://doi.org/10.1016/j.cryobiol.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  7. Szobota SA, Rubinsky B (2006) Analysis of isochoric subcooling. Cryobiology 53:139–142. https://doi.org/10.1016/j.cryobiol.2006.04.001

    Article  PubMed  Google Scholar 

  8. Giwa S, Lewis JK, Alvarez L et al (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35:530–542. https://doi.org/10.1038/nbt.3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vries RJ, de Yarmush M, Uygun K (2019) Systems engineering the organ preservation process for transplantation. Curr Opin Biotechnol 58:192–201. https://doi.org/10.1016/j.copbio.2019.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruinsma BG, Berendsen TA, Izamis M et al (2013) Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. 36:775–780. https://doi.org/10.5301/ijao.5000250

    Article  CAS  Google Scholar 

  11. Eltzschig HK, Eckle T (2011) Review Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401. https://doi.org/10.1038/nm.2507

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida K, Matsui Y, Wei T et al (1999) A novel conception for liver preservation at a temperature just above freezing point. J Surg Res 81:216–223. https://doi.org/10.1006/jsre.1998.5505

    Article  CAS  PubMed  Google Scholar 

  13. Tessier SN, Weng L, Moyo WD et al (2018) Effect of ice nucleation and cryoprotectants during high subzero-preservation in endothelialized microchannels. ACS Biomater Sci Eng 4:3006–3015. https://doi.org/10.1021/acsbiomaterials.8b00648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. do Amaral MCF, Lee RE, Costanzo JP (2015) Hepatocyte responses to in vitro freezing and β-adrenergic stimulation: insights into the extreme freeze tolerance of subarctic Rana sylvatica. J Exp Zool Part A Ecol Genet Physiol 323:89–96. https://doi.org/10.1002/jez.1905

    Article  CAS  Google Scholar 

  15. Storey KB (1999) Living in the cold: freeze-induced gene responses in freeze-tolerant vertebrates. Clin Exp Pharmacol Physiol 26:57–63. https://doi.org/10.1046/j.1440-1681.1999.02990.x

    Article  CAS  PubMed  Google Scholar 

  16. Layne JR, Costanzo JP, Lee RE (1998) Freeze duration influences postfreeze survival in the frog Rana sylvatica. J Exp Zool 280:197–201. https://doi.org/10.1002/(SICI)1097-010X(19980201)280:2<197::AID-JEZ11>3.0.CO;2-J

    Article  PubMed  Google Scholar 

  17. Bruinsma BG, Berendsen TA, Izamis ML et al (2015) Supercooling preservation and transplantation of the rat liver. Nat Protoc 10:484–494. https://doi.org/10.1038/nprot.2015.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berendsen TA, Bruinsma BG, Puts CF et al (2014) Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med 20:790–793. https://doi.org/10.1038/nm.3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor MJ, Weegman BP, Baicu SC, Giwa SE (2019) New approaches to cryopreservation of cells, tissues, and organs. Transfus Med Hemotherapy 46:197–215. https://doi.org/10.1159/000499453

    Article  Google Scholar 

  20. Costanzo JP, Grenot C, Lee RE (1995) Supercooling, ice inoculation and freeze tolerance in the European common lizard, Lacerta vivipara. J Comp Physiol B 165:238–244. https://doi.org/10.1007/BF00260815

    Article  CAS  PubMed  Google Scholar 

  21. Fahy GM, Wowk B, Wu J et al (2004) Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 48:157–178. https://doi.org/10.1016/j.cryobiol.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  22. Mikus H, Miller A, Nastase G et al (2016) The nematode Caenorhabditis elegans survives subfreezing temperatures in an isochoric system. Biochem Biophys Res Commun 477:401–405. https://doi.org/10.1016/j.bbrc.2016.06.089

    Article  CAS  PubMed  Google Scholar 

  23. Preciado J, Rubinsky B (2018) The effect of isochoric freezing on mammalian cells in an extracellular phosphate buffered solution. Cryobiology 82:155–158. https://doi.org/10.1016/j.cryobiol.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  24. Wan L, Powell-Palm MJ, Lee C et al (2018) Preservation of rat hearts in subfreezing temperature isochoric conditions to – 8 °C and 78 MPa. Biochem Biophys Res Commun 496:852–857. https://doi.org/10.1016/j.bbrc.2018.01.140

    Article  CAS  PubMed  Google Scholar 

  25. Powell-Palm MJ, Zhang Y, Aruda J, Rubinsky B (2019) Isochoric conditions enable high subfreezing temperature pancreatic islet preservation without osmotic cryoprotective agents. Cryobiology 86:130–133. https://doi.org/10.1016/j.cryobiol.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  26. Salinas-Almaguer S, Angulo-Sherman A, Sierra-Valdez FJ, Mercado-Uribe H (2015) Sterilization by cooling in isochoric conditions: the case of Escherichia coli. PLoS One 10:1–9. https://doi.org/10.1371/journal.pone.0140882

    Article  CAS  Google Scholar 

  27. Powell-Palm MJ, Preciado J, Lyu C, Rubinsky B (2018) Escherichia coli viability in an isochoric system at subfreezing temperatures. Cryobiology 85:17–24. https://doi.org/10.1016/j.cryobiol.2018.10.262

    Article  PubMed  Google Scholar 

  28. Bridges DF, Bilbao-Sainz C, Powell-Palm MJ et al (2020) Viability of Listeria monocytogenes and Salmonella Typhimurium after isochoric freezing. J Food Saf 1–8. https://doi.org/10.1111/jfs.12840

  29. Bilbao-Sainz C, Zhao Y, Takeoka G et al (2020) Effect of isochoric freezing on quality aspects of minimally processed potatoes. J Food Sci 00:1–9. https://doi.org/10.1111/1750-3841.15377

    Article  CAS  Google Scholar 

  30. Năstase G, Lyu C, Ukpai G et al (2017) Isochoric and isobaric freezing of fish muscle. Biochem Biophys Res Commun 485:279–283. https://doi.org/10.1016/j.bbrc.2017.02.091

    Article  CAS  PubMed  Google Scholar 

  31. Bilbao-Sainz C, Sinrod AJG, Williams T et al (2020) Preservation of tilapia (Oreochromis aureus) fillet by isochoric (constant volume) freezing. J Aquat Food Prod Technol 00:1–12. https://doi.org/10.1080/10498850.2020.1785602

    Article  CAS  Google Scholar 

  32. Bilbao-Sainz C, Sinrod A, Powell-Palm MJ et al (2019) Preservation of sweet cherry by isochoric (constant volume) freezing. Innov Food Sci Emerg Technol 52:108–115. https://doi.org/10.1016/j.ifset.2018.10.016

    Article  CAS  Google Scholar 

  33. Bilbao-Sainz C, Sinrod AGJ, Dao L et al (2019) Preservation of spinach by isochoric (constant volume) freezing. Int J Food Sci Technol 0–2. https://doi.org/10.1111/ijfs.14463

  34. Bilbao-Sainz C, Sinrod AJ, Dao L, Takeoka G, Williams T, Wood D, McHugh T (2021) Preservation of grape tomato by isochoric freezing. Food Res Int 110228. https://doi.org/10.1016/j.foodres.2021.110228

  35. Ukpai G, Năstase G, Şerban A, Rubinsky B (2017) Pressure in isochoric systems containing aqueous solutions at subzero centigrade temperatures. PLoS One 12:1–16. https://doi.org/10.1371/journal.pone.0183353

    Article  CAS  Google Scholar 

  36. Zhang Y, Ukpai G, Grigoropoulos A et al (2018) Cryobiology isochoric vitrification: an experimental study to establish proof of concept 83:48–55. https://doi.org/10.1016/j.cryobiol.2018.06.005

  37. Powell-Palm MJ, Koh-Bell A, Rubinsky B (2020) Isochoric conditions enhance stability of metastable supercooled water isochoric conditions enhance stability of metastable supercooled water. Appl Phys Lett 123702. https://doi.org/10.1063/1.5145334

  38. Powell-Palm MJ, Aruda J, Rubinsky B (2019) Thermodynamic theory and experimental validation of a multiphase isochoric freezing process. J Biomech Eng 141. https://doi.org/10.1115/1.4043521

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandharamakrishnan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nida, S., Moses, J.A. & Anandharamakrishnan, C. Isochoric Freezing and Its Emerging Applications in Food Preservation. Food Eng Rev 13, 812–821 (2021). https://doi.org/10.1007/s12393-021-09284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09284-x

Keywords

Navigation