Skip to main content
Log in

Characterization of the formation of key flavor volatiles in kiwifruit (Actinidia deliciosa) during storage by integrating

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

‘Cuixiang’ (Actinidia deliciosa) is recognized as a highly valued fruit with significant economic importance. Its distinctive and pleasant flavor sets it apart from other species of kiwifruit, contributing to its stellar reputation. However, the flavor profile of ‘Cuixiang’ kiwifruit is susceptible to change during storage, and the underlying mechanisms responsible for these changes have yet to be fully investigated. Herein, we conducted a comprehensive analysis of volatile profiles and transcriptome on ‘Cuixiang’ samples at different storage times, aiming to uncover the mechanism underlying the flavor biotransformation. A total of 63 volatiles were quantified by HS–SPME–GC–MS, of which 16 were identified as key compounds distinctive of aroma quality during storage by PLS-DA and OAV analysis. Besides, a total of 13,922 differentially expressed genes in fruits were identified and used to identify key candidate genes that may regulate volatiles during storage. The results of KEGG analysis showed that Achn072171, Achn270621, and Achn012241 were involved in the synthesis of key aroma compounds and verified by qRT-PCR. Weighted gene co-expression network analysis (WGCNA) showed that NAC and BHLH transcription factors were positively correlated with the expression of these genes. Our findings elucidate the underlying metabolic processes that regulate aroma during the storage of ‘Cuixiang’ kiwifruit, and the identification of key genes involved in flavor regulation presents promising targets for flavor regulation and quality assurance of ‘Cuixiang’ fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhao N, Zhang Y, Liu D, Zhang J, Qi Y, Xu J et al (2020) Eur Food Res Technol 246:875–890

    Article  CAS  Google Scholar 

  2. Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL, Bulley SM, Laing WA (2008) BMC Genomics 9:351

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garcia CV, Stevenson RJ, Atkinson RG, Winz RA, Quek SY (2013) Food Chem 137:45–54

    Article  CAS  PubMed  Google Scholar 

  4. Shen S, Chen X, Zhuo Q, Ma Y, Wang J, Wang L, Gong Z, Huo J (2022) J Food Compost Anal 112:104661

    Article  CAS  Google Scholar 

  5. Cheng CH, Seal AG, MacRae EA, Wang MY (2011) Euphytica 181:179–195

    Article  CAS  Google Scholar 

  6. Cozzolino R, De Giulio B, Petriccione M, Martignetti A, Malorni L, Zampella L, Laurino C, Pellicano MP (2020) Food Chem 316:126340

    Article  CAS  PubMed  Google Scholar 

  7. Gunther CS, Matich AJ, Marsh KB, Nicolau L (2010) Phytochemistry 71:742–750

    Article  PubMed  Google Scholar 

  8. Gunther CS, Heinemann K, Laing WA, Nicolau L, Marsh KB (2011) J Plant Physiol 168:629–638

    Article  PubMed  Google Scholar 

  9. Wang RC, Shu P, Zhang C, Zhang JL, Chen Y, Zhang YX, Du K et al (2022) New Phytol 233:373–389

    Article  CAS  PubMed  Google Scholar 

  10. Hatanaka A (1993) Phytochemistry 34:1201–1218

    Article  CAS  Google Scholar 

  11. Zhang B, Yin XR, Li X, Yang SL, Ferguson IB, Chen KS (2009) J Agric Food Chem 57:2875–2881

    Article  CAS  PubMed  Google Scholar 

  12. Nieuwenhuizen NJ, Chen XY, Wang MY, Matich AJ, Perez RL, Allan AC, Green SA, Atkinson RG (2015) Plant Physiol 167:1243-U1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagashima Y, He K, Singh J, Metrani R, Crosby KM, Jifon J, Jayaprakasha GK, Patil B, Qian XN, Koiwa H (2021) Plant Sci 304:110809

    Article  CAS  PubMed  Google Scholar 

  14. Zhang HP, Chen JJ, Peng ZX, Shi MY, Liu X, Wen H, Jiang YW, Cheng YJ, Xu J, Zhang HY (2021) BMC Plant Biol 21:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sacco A, Raiola A, Calafiore R, Barone A, Rigano MM (2019) BMC Genomic 20:43

    Article  Google Scholar 

  16. Xu MF, Shen CJ, Zhu Q, Xu YS, Xue CF, Zhu BW, Hu JN (2022) J Sci Food Agric 102:1488–1497

    Article  CAS  PubMed  Google Scholar 

  17. Sangpong L, Khaksar G, Pinsorn P, Oikawa A, Sasaki R, Erban A, Watanabe M, Wangpaiboon K, Tohge T, Kopka J, Hoefgen R, Saito K, Sirikantaramas S (2021) Front Plant Sci 12:687799

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lamine M, Gargouri M, Rahali FZ, Hamdi Z, Mliki A (2022) Eur Food Res Technol 248(5):1239–1252

    Article  CAS  Google Scholar 

  19. Zhang AD, Zhang QY, Li JH, Gong HS, Fan XG, Yang YQ, Liu XF, Yin X (2020) BMC Plant Biol 20:103

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuang JF, Wu CJ, Guo YF, Walther D, Shan W, Chen JY, Chen L, Lu WJ (2021) Plant Biotechnol J 19:477–489

    Article  CAS  PubMed  Google Scholar 

  21. Li ZK, Wang ZN, Wang KJ, Liu Y, Hong YH, Chen CM, Guan XY, Chen QX (2020) Planta 252:55

    Article  CAS  PubMed  Google Scholar 

  22. Lan T, Gao C, Yuan Q, Wang J, Zhang H, Sun X, Lei Y, Ma TT (2021) Foods 10:1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao Y, Zhan P, Wang P, Tian H (2021) Food Sci 42:118–124

    Google Scholar 

  24. Xiao Z, Ma S, Niu Y, Chen F, Yu D (2016) Flavour Fragr J 31:41–50

    Article  CAS  Google Scholar 

  25. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Li DP, Gaquerel E (2021) Annu Rev Plant Biol 72:867–891

    Article  CAS  PubMed  Google Scholar 

  28. Muhlemann JK, Klempien A, Dudareva N (2014) Plant Cell Environ 37:1936–1949

    Article  PubMed  Google Scholar 

  29. Mao D, Liu H, Li Z, Niu Y, Xiao Z, Zhang F, Zhu J (2020) Hortic Environ Biotechnol 61:197–206

    Article  CAS  Google Scholar 

  30. Xiao Z, Zhang S, Zhu J, Niu Y, Xiong W, Chen F (2023) Eur Food Res Technol 249(2):537–551

    Article  CAS  Google Scholar 

  31. Chen J, Kan J, Yang R (2010) Food Sci 31:239–243

    CAS  Google Scholar 

  32. Liu Q, Chen YQ (2009) Biochem Biophys Res Commun 384:1–5

    Article  CAS  PubMed  Google Scholar 

  33. Sessa G, Carabelli M, Possenti M, Morelli G, Ruberti I (2018) Int J Mo Sci 19:4047

    Article  Google Scholar 

  34. Alscher RG (1989) Physiol Plant 77:457–464

    Article  CAS  Google Scholar 

  35. He X, Wang C, Wang H, Li L, Wang C (2020) Front Plant Sci 11:952

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li S, Han X, Yang L, Deng X, Wu H, Zhang M, Liu Y, Zhang S, Xu J (2018) Plant Cell Environ 41:134–147

    Article  CAS  PubMed  Google Scholar 

  37. Wang MY, MacRae E, Wohlers M, Marsh K (2011) Postharvest Biol Technol 59:16–24

    Article  CAS  Google Scholar 

  38. Kou XH, Liu C, Han LH, Wang S, Xue ZH (2016) Genomics 291:1205–1217

    CAS  Google Scholar 

  39. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) The Plant J 40:22–34

    Article  CAS  PubMed  Google Scholar 

  40. Sharma P, Kumar S, Beriwal S, Sharma P, Bhairappanavar SB, Verma RJ, Das J (2020) Plant Gene 23:100234

    Article  CAS  Google Scholar 

  41. Liu X, Hu AX, Zhao JL, Chen FL (2017) J Cell Biochem 118:3953–3959

  42. Liu GS, Li HL, Grierson D, Fu DQ (2022) Cells 11:525

  43. Li C, Hou X, Qi N, Liu H, Li Y, Huang D, Liao W (2021) Sci Hortic 288:110363

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 32001825), Shaanxi Key Research and Development Program (Grant No. 2022NY-144 and 2021NY-177), Shaanxi Natural Science Foundation (Grant No. 2019JQ-665), Xi’an Agricultural Science and Technology Project (Grant No. 20193061YF049NS049 and 21NYYF0061), Special Support Plan of Shaanxi Province (TZ0432), Youth Teacher Independent Research Project (GK202207021), and Science and Technology Innovation Team of Shaanxi Province (2022TD-14).

Author information

Authors and Affiliations

Authors

Contributions

PW and PZ: Data curation, Investigation, Methodology, Software, Writing—original draft. RL: Formal analysis, Software, Writing—original draft. WH: Project administration, Resources, Writing—review & editing. GG: Funding acquisition, Writing—review & editing. HT: Funding acquisition, Supervision.

Corresponding authors

Correspondence to Wanying He or Guitian Gao.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest with respect to the work described in this manuscript.

Compliance with ethics requirements

In conducting the sensory analysis experiments for this study, we followed the ethical and professional guidelines established by the Institute of Food Science & Technology (IFST) in the United Kingdom. We took every precaution to ensure the rights and privacy of all participants throughout the research process. This included providing complete disclosure about study requirements and associated risks, obtaining written or verbal consent from participants, and refraining from disclosing any participant data without explicit permission. Additionally, we offered participants the option to withdraw from the study at any time.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2217 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhan, P., Liu, R. et al. Characterization of the formation of key flavor volatiles in kiwifruit (Actinidia deliciosa) during storage by integrating. Eur Food Res Technol 250, 1017–1029 (2024). https://doi.org/10.1007/s00217-023-04440-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04440-5

Keywords

Navigation