Skip to main content
Log in

Characterization of ACE inhibitory peptide from Cassia tora L. globulin fraction and its antihypertensive activity in SHR

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Cassia tora L. seeds, known as “juemingzi” in China, have been one of the key traditional Chinese medicines for thousands of years. When stir-fried, this herb has an excellent therapeutic effect on hypertension. Research on its active components has mainly focused on flavonoids. Proteins account for approximately 20% of the total seed weight. The effect of protein hydrolysate-derived peptides on blood pressure has not been reported yet. In this study, C. tora peptides from globulin hydrolysate were sequentially separated by ultrafiltration, ion exchange chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) and identified by the Nano LC-Q-TOF–MS. Then, molecular simulation combining in silico proteolysis was applied to screen the potent sequences. Finally, a novel ACE inhibitory peptide TTPSY was obtained with an IC50 of 5.92 × 10–6 mol/L. In vivo antihypertensive effect of this pentapeptide was evaluated in spontaneously hypertensive rats (SHR). The maximum reduction in blood pressure was 46.00 mmHg at a dose of 10 mg/kg body weight. Echocardiographic assessment revealed the treatment with TTPSY reduced ventricular wall thickness and prevented left ventricle remodeling. Novel peptide TTPSY possessed a satisfactory hypotensive effect and the cardioprotective function, similar to that of captopril, and could be a potential candidate for antihypertensive treatment. Our research provides beneficial data to reveal the pharmacological actions of C. tora.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (NCD-RisC), N.R.F.C. (2021) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398(10304):957–980

    Article  Google Scholar 

  2. Collaborators GRF (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1223–1249

    Article  Google Scholar 

  3. Unger T et al (2020) 2020 International Society of Hypertension global hypertension practice guidelines. J Hypertens 75:1334–1357

    Article  CAS  Google Scholar 

  4. Müntz K (1998) Globulins from legume seeds: structure and function during storage and reactivation. Springer, Berlin Heidelberg, pp 3–12

    Google Scholar 

  5. Bhalerao SA (2013) Bioactive constituents, ethnobotany and pharmacological prospectives of Cassia tora Linn. Int J Bioassays 2(11):1421–1427

    Google Scholar 

  6. Liying T et al (2015) Discrimination of Semen cassiae from two related species based on the multivariate analysis of high-performance liquid chromatography fingerprints. J Sep Sci 38(14):2431–2438

    Article  CAS  Google Scholar 

  7. Bhalerao SA et al (2013) Bioactive constituents, ethnobotany and pharmacological prospective of Cassia tora linn. Int J Bioassays 2(11):1421–1427

    Google Scholar 

  8. Meena AK et al (2010) Cassia tora Linn: a review on its ethnobotany, phytochemical and pharmacological profile. J Pharm Res 3:557–560

    CAS  Google Scholar 

  9. Commission CP (2020) Pharmacopoeia of the People's Republic of China

  10. Koo A et al (1976) Extraction of hypotensive principles from seeds of Cassia tora. Am J Chin Med 4(3):245–248

    Article  CAS  PubMed  Google Scholar 

  11. Tsado D et al (2013) Effect of feeding processed Cassia tora seed based diets on growth performance and biochemical indices of weaner rabbits. Niger J Anim Sci 15:49–58

    Google Scholar 

  12. Wang Q-Y et al (2019) The effect of cassia seed extract on the regulation of the LKB1–AMPK–GLUT4 signaling pathway in the skeletal muscle of diabetic rats to improve the insulin sensitivity of the skeletal muscle. Diabetol Metab Syndr 11(1):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wagner, H. et al. (2011) Semen Cassiae—Juemingzi. Springer Vienna, 935–950.

  14. Kumar R et al (2017) Evaluation of Cassia tora Linn against oxidative stress-induced DNA and cell membrane damage. J Pharm Bioallied Sci 9(1):33–43

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li S et al (2015) Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats. J Pharmacol Sci 128:108–115

    Article  CAS  PubMed  Google Scholar 

  16. Vadivel V, Janardhanan K (2002) Agrobotanical traits and chemical composition of Cassia obtusifolia L.: a lesser-known legume of the Western Ghats region of South India. Plant Foods Hum Nutr 57(2):151–164

    Article  CAS  PubMed  Google Scholar 

  17. Du L et al (2013) A novel angiotensin I-converting enzyme inhibitory peptide from Phascolosoma esculenta water-soluble protein hydrolysate. J Funct Foods 5(1):475–483

    Article  CAS  Google Scholar 

  18. Sheih IC et al (2009) Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 115(1):279–284

    Article  CAS  Google Scholar 

  19. Pei-Yao C et al (2019) Principal component analysis and angiotensin I-coverting enzyme inhibitory activity of hydrolysates of fried Cassiae Semen. Mod Chinese Med. https://doi.org/10.13313/j.issn.1673-4890.20180727003

    Article  Google Scholar 

  20. Yu L et al (2014) Determination of the content of cystine in compound amino acids injection (18AA) with performic acid oxidation by amino acid analyzer. Chin J Mod Appl Pharm. 871–873. https://doi.org/10.13748/j.cnki.issn1007-7693.2014.07.027

  21. Chen Y (2000) Direct determination of tyrosine, phenylalanine, and tryptophan by high performance liquid chromatography. Amino Acids Biotic Resour 55–58. https://doi.org/10.3969/j.issn.1006-8376.2000.01.016

  22. Wallace JC et al (1990) New methods for extraction and quantitation of zeins reveal a high content of γ-zein in modified opaque-2 maize. Plant Physiol 92(1):191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan J et al (2014) Angiotensin I converting enzyme inhibitory and antioxidant activity of adlay (COIX LACRYMA-JOBI L.VAR MA-YUEN STAPF) glutelin hydrolysate. Ital J Food Ence 26(3):282–288

    CAS  Google Scholar 

  24. Chen P et al (2019) Principal component analysis of fried Cassiae Semen and its antihypertensive activity of peptide. Mod Chin Med 21(3):365–369

    Google Scholar 

  25. Sapan CV, Lundblad RL (2015) Review of methods for determination of total protein and peptide concentration in biological samples. PROTEOMICS—Clin Appl 9(3–4):268–276

    Article  CAS  PubMed  Google Scholar 

  26. Ghanbari R et al (2015) Angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidant activities of sea cucumber (Actinopyga lecanora) hydrolysates. Int J Mol Sci. https://doi.org/10.3390/ijms161226140

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y et al (2019) A novel angiotensin-I converting enzyme inhibitory peptide derived from the glutelin of vinegar soaked black soybean and its antihypertensive effect in spontaneously hypertensive rats. J Biochem 166(3):223–230

    Article  CAS  PubMed  Google Scholar 

  28. Qiao LS et al (2017) Prediction of ETA oligopeptides antagonists from Glycine max based on in silico proteolysis. China J Chin Mater Med 4:746–751

    Google Scholar 

  29. Natesh R et al (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421(6922):551

    Article  CAS  PubMed  Google Scholar 

  30. Masuyer G et al (2014) Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensin-I converting enzyme. FEBS J 281(3):943–956

    Article  CAS  PubMed  Google Scholar 

  31. Glenna J et al (2014) Interkingdom pharmacology of Angiotensin-I converting enzyme inhibitor phosphonates produced by actinomycetes. ACS Med Chem Lett. https://doi.org/10.1021/ml4004588

    Article  Google Scholar 

  32. Minkiewicz P et al (2019) BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci 20(23):5978

    Article  CAS  PubMed Central  Google Scholar 

  33. Qiao L et al (2016) Discovery of anti-hypertensive oligopeptides from Adlay based on in silico proteolysis and virtual screening. Int J Mol Sci 17(12):2099

    Article  PubMed Central  CAS  Google Scholar 

  34. Lu J et al (2017) Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet. https://doi.org/10.1016/S0140-6736(17)32478-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oparil S et al (2018) Hypertension. Nat Rev Dis Primers 4:18014

    Article  PubMed  PubMed Central  Google Scholar 

  36. Messerli FH et al (2018) Angiotensin-converting enzyme inhibitors in hypertension: to use ornotto use? J Am Coll Cardiol 71(13):1474–1482

    Article  CAS  PubMed  Google Scholar 

  37. Cooper WO et al (2007) Fetal exposure to ACE inhibitors increased risk of major congenital malformations. Evid Based Med 12(1):26

    Article  Google Scholar 

  38. Ni H et al (2012) Isolation and identification of an angiotensin-I converting enzyme inhibitory peptide from yeast (Saccharomyces cerevisiae). Curr Anal Chem 8:180–185

    Article  CAS  Google Scholar 

  39. Chen C et al (2012) Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate. Food Sci Biotechnol 21(1):27–34

    Article  CAS  Google Scholar 

  40. Li Y et al (2016) A novel ACE inhibitory peptide Ala-His-Leu-Leu lowering blood pressure in spontaneously hypertensive rats. J Med Food 19:181–186. https://doi.org/10.1089/jmf.2015.3483

    Article  CAS  PubMed  Google Scholar 

  41. Lunow D et al (2013) Selective release of ACE-inhibiting tryptophan-containing dipeptides from food proteins by enzymatic hydrolysis. Eur Food Res Technol 237(1):27–37

    Article  CAS  Google Scholar 

  42. Jang JH et al (2011) Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem 127(2):412–418

    Article  CAS  PubMed  Google Scholar 

  43. Gouda K et al (2006) Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max). J Agric Food Chem 54(13):4568–4573

    Article  CAS  Google Scholar 

  44. Ceren D et al (2017) Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 9(4):316

    Article  CAS  Google Scholar 

  45. Fahmi A et al (2004) Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochem 39(10):1195–1200

    Article  CAS  Google Scholar 

  46. Matsui T et al (2000) Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol Pharm Bull 23(4):427

    Article  CAS  PubMed  Google Scholar 

  47. Sornwatana T et al (2016) Chebulin: terminalia chebula Retz. fruit-derived peptide with angiotensin-I–converting enzyme inhibitory activity. Biotechnol Appl Biochem 62(6):746–753

    Article  CAS  Google Scholar 

  48. Dong X et al (2017) Cassiae semen: a review of its phytochemistry and pharmacology (Review). Mol Med Rep 16(3):2331–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Upadhyaya SK, Singh V (1986) Phytochemical evaluation of Cassia obtusifolia L. and Cassia tora L. Proc Plant Sci 96(4):321–326

    Article  CAS  Google Scholar 

  50. Tang L et al (2015) Discrimination of Semen cassiae from two related species based on the multivariate analysis of high-performance liquid chromatography fingerprints. J Sep Sci 38(14):2431–2438

    Article  CAS  PubMed  Google Scholar 

  51. Shih YH et al (2019) Discovery and study of novel antihypertensive peptides derived from Cassia obtusifolia seeds. J Agric Food Chem 67(28):7810–7820

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO. 81872972).

Author information

Authors and Affiliations

Authors

Contributions

PC: Investigation, Data curation, Writing-Original draft preparation. YR: Software. YZ: Investigation. YL: Software. HS: Investigation. ZC: Conceptualization, Methodology and Supervision. LW: Conceptualization, Methodology and Supervision. All authors approved it for publication.

Corresponding authors

Correspondence to Zujun Chen or Lingzhi Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Ren, Y., Zhang, Y. et al. Characterization of ACE inhibitory peptide from Cassia tora L. globulin fraction and its antihypertensive activity in SHR. Eur Food Res Technol 248, 1917–1928 (2022). https://doi.org/10.1007/s00217-022-04015-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04015-w

Keywords

Navigation