Skip to main content
Log in

Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Functional properties, antioxidant, and angiotensin-I converting enzyme (ACE) inhibitory activities of egg white protein hydrolysate (EWPH) prepared with trypsin at different degree of hydrolysis (DH) were investigated. The DPPH radical scavenging activity, reducing power, lipid peroxidation inhibitory activity, and ACE inhibitory activity increased with DH at first and then decreased gradually. Hydrolysates with 12.4% DH had the highest antioxidant and ACE inhibitory activities. As DH increased, the solubility of EWPH increased while the emulsifying and foaming properties decreased. The functional properties of EWPH were also controlled by pH. Ultrafiltration of the hydrolysate with 12.4% DH revealed that the fractions of molecular weight lower than 3 kDa exhibited the highest antioxidant and ACE inhibitory activities. The results indicated that EWPH with different DH have different bioactive and functional properties and EWPH by controlled hydrolysis may be useful ingredients in food and nutraceutical applications with potential bioactive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. Int. Dairy J. 16: 945–960 (2006)

    Article  CAS  Google Scholar 

  2. Dávalos A, Miguel M, Bartolomé B, López-Fandiño R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Protect. 67: 1939–1944 (2004)

    Google Scholar 

  3. Pihlanto A, Akkanen S, Korhonen HJ. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem. 109: 104–112 (2008)

    Article  CAS  Google Scholar 

  4. Nakajima K, Yoshie-Stark Y, Ogushi M. Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates. Food Chem. 114: 844–851 (2009)

    Article  CAS  Google Scholar 

  5. Je JY, Lee KH, Lee MH, Ahn CB. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res. Int. 42: 1266–1272 (2009)

    Article  CAS  Google Scholar 

  6. Kristinsson HG, Rasco BA. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. 40: 43–81 (2000)

    Article  CAS  Google Scholar 

  7. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102: 1317–1327 (2007)

    Article  CAS  Google Scholar 

  8. Pacheco-Aguilar R, Mazorra-Manzano MA, Ramírez-Suárez JC. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem. 109: 782–789 (2007)

    Article  Google Scholar 

  9. Liu Q, Kong B, Xiong YL, Xia X. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118: 403–410 (2010)

    Article  CAS  Google Scholar 

  10. Miguel M, Recio I, Gómez-Ruiz JA, Ramos M, López-Fandiño R. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Protect. 67: 1914–1920 (2004)

    CAS  Google Scholar 

  11. Xu MS, Shangguan XC, Wang WJ, Chen JP. Antioxidative activity of hen egg ovalbumin hydrolysates. Asia. Pac. J. Clin. Nutr. 16(Suppl 1): 178–182 (2007)

    CAS  Google Scholar 

  12. Miguel M, Alonso MJ, Salaices M, Aleixandre A, López-Fandino R. Antihypertensive, ACE-inhibitory, and vasodilator properties of an egg white hydrolysate: Effect of a simulated intestinal digestion. Food Chem. 104: 163–168 (2007)

    Article  CAS  Google Scholar 

  13. Adler-Nissen J. Enzymic Hydrolysis of Food Proteins. Barking. Vol. 9–56. Elsevier, London, UK. pp. 110–169 (1986)

    Google Scholar 

  14. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agr. Food Chem. 51: 3661–3667 (2003)

    Article  CAS  Google Scholar 

  15. Chung SK, Osawa T, Kawakishis S. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci. Biotech. Bioch. 61: 118–123 (1997)

    Article  CAS  Google Scholar 

  16. Shahidi F, Liyana-Pathirana CM, Wall DS. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 99: 478–483 (2006)

    Article  CAS  Google Scholar 

  17. Kim SY, Je JY, Kim SK. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18: 31–38 (2007)

    Article  CAS  Google Scholar 

  18. Yen GC, Chen HY. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agr. Food Chem. 43: 27–32 (1995)

    Article  CAS  Google Scholar 

  19. Wu JP, Aluko RE, Muir AD. Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. J. Chromatogr. A 950: 125–130 (2002)

    Article  Google Scholar 

  20. Morr CV. Composition, physicochemical, and functional properties of reference whey protein concentrates. J. Food Sci. 50: 1406–1411 (1985)

    Article  CAS  Google Scholar 

  21. Pearce KN, Kinsella JE. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agr. Food Chem. 26: 716–723 (1978)

    Article  CAS  Google Scholar 

  22. Shahidi F, Xiao-Quing H, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53: 285–293 (1995)

    Article  CAS  Google Scholar 

  23. Chalamaiah M, Narsing Rao G, Rao DG, Jyothirmayi T. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem. 120: 652–657 (2010)

    Article  CAS  Google Scholar 

  24. Rahali V, Chobert JM, Haertle T, Gueguen J. Emulsification of chemical and enzymatic hydrolysates of β-lactoglobulin: Characterization of the peptides adsorbed at the interface. Nahrung 44: 89–95 (2000)

    Article  CAS  Google Scholar 

  25. Hammershoj M, Nebel C, Carstens JH. Enzymatic hydrolysis of ovomucin and effect on foaming properties. Food Res. Int. 41: 522–531 (2008)

    Article  CAS  Google Scholar 

  26. Liang Y, Kristinsson HG. Structural and foaming properties of egg albumen subjected to different pH-treatments in the presence of calcium ions. Food Res. Int. 40: 668–678 (2007)

    Article  CAS  Google Scholar 

  27. Waniska RD, Kinsella JE. Foaming properties of proteins: Evaluation of a column aeration apparatus using ovalbumin. J. Food Sci. 44: 1398–1411 (1979)

    Article  CAS  Google Scholar 

  28. Moure A, Domínguez H, Parajó JC. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41: 447–456 (2006)

    Article  CAS  Google Scholar 

  29. You L, Zhao M, Cui C, Zhao H, Yang B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov. Food Sci. Emerg. 10: 235–240 (2009)

    Article  CAS  Google Scholar 

  30. Kong BH, Xiong YL. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agr. Food Chem. 54: 6059–6068 (2006)

    Article  CAS  Google Scholar 

  31. Ranathunga S, Rajapakse N, Kim SK. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur. Food Res. Technol. 222: 310–315 (2006)

    Article  CAS  Google Scholar 

  32. Chen HM, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agr. Food Chem. 43: 574–578 (1995)

    Article  CAS  Google Scholar 

  33. Majumder K, Wu J. A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res. Int. 43: 1371–1378 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jie Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Chi, YJ., Zhao, MY. et al. Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate. Food Sci Biotechnol 21, 27–34 (2012). https://doi.org/10.1007/s10068-012-0004-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0004-6

Keywords

Navigation