Skip to main content
Log in

Vitality and detoxification ability of yeasts in naturally As-rich musts

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Considering the carcinogenic risk to human health, it is necessary to carry out research into arsenic (As) content in agro-food products and the impact of food processing on the final content. Yeast fermentation may represent a strategy for detoxifying some widespread beverages such as wine, beer and rice wine. A preliminary study of some commercial yeast species showed different viability responses to the presence of As. Yeasts had a noteworthy detoxification capability during fermentation, reducing the initial As content by about 75 % on average (minimum–maximum: 45–92 %), making it possible to produce wines with a considerably reduced content as compared to the corresponding grape juices from naturally As-rich soils. Nevertheless, significant differences between strains were observed in relation to resistance to arsenic toxicity and As removal capability. The choice of yeast strain can determine a difference of 40 % on the As content remaining in the wine after fermentation. Arsenic content of up to 1000 µg/L did not significantly worsen the fermentation of some wine yeasts, suggesting that the use of specific yeasts may represent an effective tool for reducing As in fermented beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. IARC (2013) IARC monographs on the evaluation of the carcinogenic risks to humans. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed 11 August 2015

  2. Buck WB (1978) Toxicity of inorganic and aliphatic organic arsenicals. In: Oehme FW (ed) Toxicity of heavy metals in the environment. Marcel Dekker, New York

    Google Scholar 

  3. Tariba B (2011) Metals in wine—impact on wine quality and health outcomes. Biol Trace Elem Res 144:143–156

    Article  CAS  Google Scholar 

  4. WHO (2011) Technical Report Series 959. 72th report of the joint FAO/WHO Expert committee on food additives. Evaluation of certain contaminants in food. WHO, Geneva, p 22

  5. WHO (1993) Guidelines for drinking-water quality. Chapter 3. Chemical aspects. WHO, Geneva

    Google Scholar 

  6. OIV-MA-C1-1 (2011) Maximum acceptable limits of various substances contained in wine. Compendium of international methods of analysis OIV (R2011):1–3

  7. FDA (2013) Guidance for industry. Arsenic in apple juice: action level. Draft guidance. 78 FR 42086 U.S. Department of Health and Human Services Food and Drug Administration. http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ChemicalContaminantsMetalsNaturalToxinsPesticides/ucm360020.htm. Accessed 11 August 2015

  8. EFSA European Food Safety Authority (2010) Scientific Opinion on Arsenic in Food. EFSA J 2009 7(10):1351

    Google Scholar 

  9. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  10. Ko BG, Vogeler I, Bolan N, Clothier B, Green S, Kennedy J (2007) Mobility of copper, chromium and arsenic from treated timber into grapevines. Sci Total Environ 388:35–42

    Article  CAS  Google Scholar 

  11. Eschnauer H (1982) Trace elements in must and wine: primary and secondary contents. Am J Enol Vitic 33(4):226–230

    CAS  Google Scholar 

  12. Galani-Nikolakaki S, Kallithrakas-Kontos N, Katsanos AA (2002) Trace element analysis of Cretan wines and wine products. Sci Total Environ 285:155–163

    Article  CAS  Google Scholar 

  13. Crecelius EA (1977) Arsenite and arsenate levels in wine. Bull Environ Contam Toxicol 18(2):227–230

    Article  CAS  Google Scholar 

  14. Woller R, Breitbach K, Holbach B (1989) Arsen. In: Würdig G, Woller R (eds) Chemie des weines. Ulmer GmbH, Stuttgart

    Google Scholar 

  15. Castiñeira Gómez MM, Brandt R, Jakubowski N, Andersson JT (2004) Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma-Mass Spectrometry. J Agric Food Chem 52(10):2953–2961

    Article  Google Scholar 

  16. Nicolini G, Bertoldi D, Román T, Larcher R (2010) Trazabilidad de los vinos basada en la composición mineral fina.Repercusión de los tratamientos enológicos. In: Proceedings VII Foro Mundial del Vino

  17. Larcher R, Nicolini G (2008) Elements and inorganic anions in winemaking: analysis and applications. In: Flamini R (ed) Hyphenated techniques in grape and wine chemistry. Wiley, Chichester

    Google Scholar 

  18. Fang YL, Zhang A, Wang H, Li H, Zhang ZW, Chen SX, Luan LY (2010) Health risk assessment of trace elements in Chinese raisins produced in Xinjiang province. Food Control 21:732–739

    Article  CAS  Google Scholar 

  19. Bertoldi D, Larcher R, Bertamini M, Otto S, Concheri G, Nicolini G (2011) Accumulation and distribution pattern of macro- and microelements and trace elements in Vitis vinifera L. cv. Chardonnay berries. J Agric Food Chem 59:7224–7236

    Article  CAS  Google Scholar 

  20. Bertoldi D, Román Villegas T, Larcher R, Santato A, Nicolini G (2013) Arsenic present in the soil-vine-wine chain in vineyards situated in an old mining area in Trentino (Italy). Environ Toxicol Chem 32(4):773–779

    Article  CAS  Google Scholar 

  21. Bertoldi D, Nicolini G, Larcher R, Bertamini M, Concheri G (2009) Washing methods for removal of residues of 44 mineral elements from grapes. In: Cecchi F, Greven M, Minguez S, Foladori P, Bolzonella D (eds) Proceedings V International Congress on Sustainable viticulture: winery waste and ecological impacts management. Università degli Studi di Trento, Trento

    Google Scholar 

  22. Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D (1997) The determination of authenticity of wine from its trace element composition. Food Chem 60:443–450

    Article  CAS  Google Scholar 

  23. Herce-Pagliai C, Moreno I, González G, Repetto M, Cameán AM (2002) Determination of total arsenic, inorganic and organic arsenic species in wine. Food Addit Contam 19(6):542–546

    Article  CAS  Google Scholar 

  24. Nicolini G, Larcher R, Bontempo L (2003) Caratterizzazione della composizione di base e del contenuto di elementi in micro-quantità ed in tracce in spumanti italiani elaborati con il metodo classico. Rivista di Viticoltura ed Enologia 56(4):29–44

    CAS  Google Scholar 

  25. Kment P, Mihaljevič M, Ettler V, Šebek O, Strnad L, Rohlová L (2005) Differentiation of Czech wines using multielement composition—a comparison with vineyard soil. Food Chem 91:157–165

    Article  CAS  Google Scholar 

  26. Fiket Ž, Mikac N, Kniewald G (2010) Arsenic and other trace elements in wines of eastern Croatia. Food Chem 126:941–947

    Article  Google Scholar 

  27. Dugo G, La Pera L, Lo Turco V, Di Bella G (2005) Speciation of inorganic arsenic in alimentary and environmental aqueous samples by using derivative anodic stripping chronopotentiometry (dASCP). Chemosphere 61:1093–1101

    Article  CAS  Google Scholar 

  28. Karadjova IB, Lampugnani L, Onor M, D’Ulivo A, Tsalev DL (2005) Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine. Spectrochim Acta B 60:816–823

    Article  Google Scholar 

  29. Moreira CM, Duarte FA, Lebherz J, Pozebon D, Flores EMM, Dressler VL (2011) Arsenic speciation in white wine by LC-ICP-MS. Food Chem 126:1406–1411

    Article  CAS  Google Scholar 

  30. Mutic JJ, Manojlovic DD, Stankovic D, Dj Lolic A (2011) Development of inductively coupled plasma atomic emission spectrometry for arsenic determination in wine. Pol J Environ Stud 20(1):133–139

    CAS  Google Scholar 

  31. Huang JH, Hu KN, Ilgen J, Ilgen G (2012) Occurrence and stability of inorganic and organic arsenic species in wines, rice wines and beers from Central European market. Food Addit Contam A 29(1):85–93

    Article  CAS  Google Scholar 

  32. Escudero LB, Martinis EM, Olsina RA, Wuilloud RG (2013) Arsenic speciation analysis in mono-varietal wines by on-line ionic liquid-based dispersive liquid–liquid microextraction. Food Chem 138:484–490

    Article  CAS  Google Scholar 

  33. Amin G, Standaert P, Verachtert H (1984) Effects of metabolic inhibitors on the alcoholic fermentation by several yeasts in batch or in immobilized cell systems. Appl Microbiol Biotechnol 19(2):91–99

    Article  CAS  Google Scholar 

  34. Roy D, Gaur P, Verma N, Pathireddy M, Singh KP (2013) Bioremediation of arsenic (III) from water using baker yeast Saccharomyces cerevisiae. Int J Environ Bioremediation Biodegrad 1(1):14–19

    Google Scholar 

  35. Guzzon R, Larcher R (2015) The application of flow cytometry in microbiological monitoring during winemaking: two case studies. Ann Microbiol. doi:10.1007/s13213-014-1025-6

    Google Scholar 

  36. Malacrino P, Zapparoli G, Torriani S, Dellaglio F (2001) Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J Microbiol Methods 45(2):127–134

    Article  CAS  Google Scholar 

  37. Riberau-Gayon P, Glories Y, Maujean A, Dubourdie D (2003a) Trattato di enologia. 1. Microbiologia del vino. Vinificazioni, 2nd edn. Edagricole, Bologna

  38. Aguilar MV, Martinez Para MC, Masoud TA (1987) Arsenic content in some Spanish wines. Influence of the wine-making technique on arsenic content in musts and wines. Z Lebensm Unters Forsch A 185:185–187

    Article  CAS  Google Scholar 

  39. Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34(6):925–995

    Article  CAS  Google Scholar 

  40. Herce-Pagliai C, Gonzalez G, Camean AM, Repetto M (1999) Presence and distribution of arsenical species in beer. Food Addit Contam 16(6):267–271

    Article  CAS  Google Scholar 

  41. Wyrzykowska B, Szymczyk K, Ichichashi H, Falandysz J, Skwarzec B, Yamasaki S (2001) Application of ICP sector field MS and Principal component analysis for studying interdependences among 23 trace elements in Polish beers. J Agric Food Chem 49:3425–3431

    Article  CAS  Google Scholar 

  42. Donadini G, Spalla S, Beone GM (2008) Arsenic, cadmium and lead in beers from the Italian market. J Inst Brew 114(4):283–288

    Article  CAS  Google Scholar 

  43. Roberge J, Abalos AT, Skinner JM, Kopplin M, Harris RB (2009) Presence of arsenic in commercial beverages. Am J Environ Sci 5(6):688–694

    Article  CAS  Google Scholar 

  44. Riberau-Gayon P, Glories Y, Maujean A, Dubourdie D (2003b) Trattato di enologia. 2. Chimica del vino. Stabilizzazione. Trattamenti, 2nd edn. Edagricole, Bologna

  45. Román T (2011) Indagine sul contenuto di arsenico nella filiera vitienologica. Esperienze in Trentino. (Second cycle Degree Thesis). University of Bologna, Bologna

Download references

Acknowledgments

We thank the technical staff of the Consulting and Services Centre (Viticulture Area) of the Fondazione E. Mach for support during sampling and A. Versari (University of Bologna) for critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Bertoldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This paper does not contain any studies with human or animal subject.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoldi, D., Román, T., Guzzon, R. et al. Vitality and detoxification ability of yeasts in naturally As-rich musts. Eur Food Res Technol 242, 1655–1662 (2016). https://doi.org/10.1007/s00217-016-2664-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2664-6

Keywords

Navigation