Skip to main content
Log in

Effect of selenium on growth and antioxidant enzyme activities of wine related yeasts

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of supplements in the diet is a common practice to address nutritional deficiencies. Selenium is an essential micronutrient with an antioxidant and anti-carcinogenic role in human and animal health. There is increasing interest in developing nutritional supplements such as yeast cells enriched with selenium. The possibility of producing beverages, namely wine, with selenium-enriched yeasts, led us to investigate the selenium tolerance of six wine related yeasts. The production of such cells may hamper selenium toxicity problems. Above certain concentrations selenium can be toxic inducing oxidative stress and yeast species can show different tolerance. This work aimed at studying selenium tolerance of a diversity of wine related yeasts, thus antioxidant response mechanisms with different concentrations of sodium selenite were evaluated. Viability assays demonstrated that the yeast Torulaspora delbrueckii showed the highest tolerance for the tested levels of 100 µg mL−1 of sodium selenite. The evaluation of antioxidative enzyme activities showed the best performance for concentrations of 250 and 100 µg mL−1, respectively for the yeast species Saccharomyces cerevisiae and Hanseniaspora guilliermondii. These results encourage future studies on the possibility to use pre-enriched yeast cells as selenium supplement in wine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi HE (1983) Catalase. In: Bergmeyer J (ed) Methods of enzymatic analysis: oxidoreductases, transferases, vol III. Verlag, Weinheim, pp 273–286

    Google Scholar 

  • Alzate A, Fernández-Fernéndez A, Pérez-Conde MC (2008) Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir. J Agric Food Chem 56:8728–8736

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Aravind P, Prasad M (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate–glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    Article  CAS  Google Scholar 

  • Baleiras-Couto MM, Reizinho R, Duarte F (2005) Partial 26S rDNA restriction analysis as a tool to characterize non-Saccharomyces yeasts present during red wine fermentations. Int J Food Microbiol 102:49–56

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:1–2

    Article  Google Scholar 

  • Brenneisen P, Steinbrenner H, Sies H (2005) Selenium, oxidative stress, and health aspects. Mol Aspects Med 26:256–267

    Article  CAS  Google Scholar 

  • Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD (2001) Protective effects of vitamins and selenium compounds in yeast. Genet Toxicol Environ Mutagen 496:105–115

    Article  CAS  Google Scholar 

  • Chen T, Li W, Schulz PJ, Furst A, Chien PK (1995) Induction of peroxisome proliferation and increase of catalase activity in yeast, Candida albicans, by cadmium. Biol Trace Elem Res 50:125–133

    Article  CAS  Google Scholar 

  • Chen TF, Zheng WJ, Wong YS, Yang F (2008) Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. J Integr Plant Biol 50:40–48

    Article  CAS  Google Scholar 

  • Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22:217–246

    Article  CAS  Google Scholar 

  • Donahue J, Okpodu C, Cramer C, Grabau E, Alscher R (1997) Responses of antioxidants to paraquat in pea leaves. Plant Physiol 113:249–257

    CAS  Google Scholar 

  • Esteve-Zarzoso B, Manzanares P, Ramón D, Querol A (1998) The role of non-Saccharomyces yeasts in industrial winemaking. Int Microbiol 1:143–148

    CAS  Google Scholar 

  • Garnczarska M (2005) Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Biochem 43:583–590

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-Induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapessed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  Google Scholar 

  • Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome. J Biol Chem 276:14279–14288

    CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  CAS  Google Scholar 

  • Kaur T, Bansal MP (2006) Selenium enrichment and anti-oxidant status in baker’s yeast, Saccharomyces cerevisiae at different sodium selenite concentrations. Nutr Hosp 21:704–708

    CAS  Google Scholar 

  • Mapelli V, Hillestrøm PR, Patil K, Larsen EH, Olsson L (2012) The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae. FEMS Yeast Res 12:20–32

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem VF (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  Google Scholar 

  • Pedrero Z, Madrid Y (2009) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634:135–152

    Article  CAS  Google Scholar 

  • Pérez-Corona MT, Sánchez-Martínez M, Valderrama MJ, Rodríguez ME, Cámara C, Madrid Y (2011) Selenium biotransformation by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: laboratory-scale experiments. Food Chem 124:1050–1055

    Article  Google Scholar 

  • Ponce de León CA, Bayón MM, Paquin C, Caruso JA (2002) Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol 92:602–610

    Article  Google Scholar 

  • Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115:531–540

    Article  CAS  Google Scholar 

  • Santoro N, Thiele DJ (1997) Oxidative stress responses in the yeast Saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Heidelberg, pp 241–287

    Google Scholar 

  • Scandalios J (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  Google Scholar 

  • SCF—Scientific Committee on Food (2000) Opinion of the scientific committee of food of the tolerable upper intake level of selenium. European Commission, Health and Consumer Protection Directorate-General, SCF/CS/NUT/UPPLEV/25 Final, pp 1–18

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandranshekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbato glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. Cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64

    Article  CAS  Google Scholar 

  • Stabnikova O, Wang J, Ding H, Tay J (2005) Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium. Bioresour Technol 96:747–751

    Article  CAS  Google Scholar 

  • Suhajda Á, Hegóczki J, Janzsó B, Pais I, Vereczkey G (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol 14:43–47

    Article  CAS  Google Scholar 

  • Thiry C, Ruttens A, Temmerman LD, Schneider Y, Pussemier L (2012) Current knowledge in species-related bioavailability of selenium in food. Food Chem 130:767–784

    Article  CAS  Google Scholar 

  • Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110

    Article  CAS  Google Scholar 

  • Zohre DE, Erten H (2002) The influence of Kloeckera apiculata and Candida pulcherrima yeasts on wine fermentation. Process Biochem 38:319–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Rafaela Reis for her collaboration in the antioxidative enzymatic assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Baleiras-Couto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assunção, M., Martins, L.L., Mourato, M.P. et al. Effect of selenium on growth and antioxidant enzyme activities of wine related yeasts. World J Microbiol Biotechnol 31, 1899–1906 (2015). https://doi.org/10.1007/s11274-015-1930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1930-2

Keywords

Navigation