Skip to main content
Log in

Metals in Wine—Impact on Wine Quality and Health Outcomes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metals in wine can originate from both natural and anthropogenic sources, and its concentration can be a significant parameter affecting consumption and conservation of wine. Since metallic ions have important role in oxide–reductive reactions resulting in wine browning, turbidity, cloudiness, and astringency, wine quality depends greatly on its metal composition. Moreover, metals in wine may affect human health. Consumption of wine may contribute to the daily dietary intake of essential metals (i.e., copper, iron, and zinc) but can also have potentially toxic effects if metal concentrations are not kept under allowable limits. Therefore, a strict analytical control of metal concentration is required during the whole process of wine production. This article presents a critical review of the existing literature regarding the measured metal concentration in wine, methods applied for their determination, and possible sources, as well as their impact on wine quality and human health. The main focus is set on aluminum, arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc, as these elements most often affect wine quality and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grønbæk M, Becker U, Johansen D et al (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann Intern Med 133:411–419

    PubMed  Google Scholar 

  2. Suh I, Shaten J, Cutler JA et al (1992) Alcohol use and mortality from coronary heart disease: the role of high-density lipoprotein cholesterol. Ann Intern Med 116:881–887

    PubMed  CAS  Google Scholar 

  3. Pohl P (2007) What do metals tell us about wine? Trends Anal Chem 26:941–949

    Article  CAS  Google Scholar 

  4. Aceto M (2003) Metals in wine. In: Preedy VR, Watson RR (eds) Reviews in food and nutrition toxicity. Taylor and Francis, London

    Google Scholar 

  5. Galani-Nikolakaki S, Kallithrakas-Kontos N, Katsanos AA (2002) Trace element analysis of Cretan wines and wine products. Sci Total Environ 285:155–163

    Article  PubMed  CAS  Google Scholar 

  6. Conde JE, Estévez D, Rodríguez-Bencomo JJ et al (2002) Characterization of bottled wines from the Tenerife Island (Spain) by their metal ion concentration. Ital J Food Sci 14:375–387

    CAS  Google Scholar 

  7. OIV (International Organization of Vine and Wine) (2006) International code of oenological practices. http://news.reseau-concept.net/images/oiv_uk/Client/PNO02A_CODE%20Ed%202006%20EN.pdf. Accessed 16 Jul 2010

  8. Kment P, Mihaljevič M, Ettler V et al (2005) Differentiation of Czech wines using multielement composition—a comparison with vineyard soil. Food Chem 91:157–165

    Article  CAS  Google Scholar 

  9. Catarino S, Pimentel I, Curvelo-Garcia AS (2005) Determination of copper in wine by ETAAS using conventional and fast thermal programs: validation of analytical method. At Spectrosc 25:73–78

    Google Scholar 

  10. Ibanez JG, Carreon-Alvarez A, Barcena-Soto M et al (2008) Metals in alcoholic beverages: a review of sources, effects, concentrations, removal, speciation, and analysis. J Food Compos Anal 21:672–683

    Article  CAS  Google Scholar 

  11. Kristl J, Veber M, Slekovec M (2003) The contents of Cu, Mn, Zn, Cd, Cr and Pb at different stages of the winemaking process. Acta Chim Slov 50:123–136

    CAS  Google Scholar 

  12. Tromp A, Klerk CA (1988) Effect of copperoxychloride on the fermentation of must and wine quality. S Afr J Enol Vitic 9:31–36

    CAS  Google Scholar 

  13. Cabrera-Vique C, Teissedre PL, Cabanis MT et al (1997) Determination and levels of chromium in French wine and grapes by graphite furnace atomic absorption spectrometry. J Agric Food Chem 45:1808–1811

    Article  CAS  Google Scholar 

  14. Volpe MG, La Cara F, Volpe F et al (2009) Heavy metal uptake in the enological food chain. Food Chem 117:553–560

    Article  CAS  Google Scholar 

  15. Stafilov T, Karadjova I (2009) Atomic absorption spectrometry in wine analysis. A review. Maced J Chem Chem Eng 28:17–31

    CAS  Google Scholar 

  16. Flamini R, Panighel A (2006) Mass spectrometry in grape and wine chemistry. Part II: the consumer protection. Mass Spectrom Rev 25:741–774. doi:10.1002/mas.20087

    Article  PubMed  CAS  Google Scholar 

  17. Cvetković J, Arpadjan S, Karadjova I et al (2006) Determination of cadmium in wine by electrothermal atomic absorption spectrometry. Acta Pharm 56:69–77

    PubMed  Google Scholar 

  18. Lara R, Cerutti S, Salonia JA et al (2005) Trace element determination of Argentine wines using ETAAS and USN-ICP-OES. Food Chem Toxicol 43:293–297

    Article  PubMed  CAS  Google Scholar 

  19. Medina B, Augagneur S, Barbaste M et al (2000) Influence of atmospheric pollution on the lead content of wines. Food Addit Contam 17:435–445

    Article  PubMed  CAS  Google Scholar 

  20. Kaufmann A (1998) Lead in wine. Food Addit Contam 15:437–445

    Article  PubMed  CAS  Google Scholar 

  21. Rivero Huguet ME (2004) Monitoring of Cd, Cr, Cu, Fe, Mn, Pb and Zn in fine Uruguayan wines by atomic absorption spectroscopy. At Spectrosc 25:177–184

    Google Scholar 

  22. Esparza I, Salinas I, Santamaria C et al (2005) Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta 543:267–274

    Article  CAS  Google Scholar 

  23. Cacho J, Castells EJ, Esteban A et al (1995) Iron, copper, and manganese influence on wine oxidation. Am J Enol Vitic 46:380–384

    CAS  Google Scholar 

  24. McKinnon AJ, Cattrall RW, Scollary GR (1992) Aluminum in wine—its measurement and identification of major sources. Am J Enol Vitic 43:166–170

    CAS  Google Scholar 

  25. Ražić S, Čokeša Đ, Sremac S (2007) Multivariate data visualization methods based on elemental analysis of wines by atomic absorption spectrometry. J Serb Chem Soc 72:1487–1492

    Article  Google Scholar 

  26. Tamasi G, Pagni D, Carapelli C et al (2010) Investigation on possible relationships between the content of sulfate and selected metals in Chianti wines. J Food Compos Anal 23:333–339

    Article  CAS  Google Scholar 

  27. Ajtony Z, Szoboszlai N, Suskó EK et al (2008) Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta 76:627–634

    Article  PubMed  CAS  Google Scholar 

  28. Dessuy MB, Vale MGR, Souza AS et al (2008) Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers. Talanta 74:1321–1329

    Article  PubMed  CAS  Google Scholar 

  29. Freschi GPG, Dakuzaku CS, de Moraes M et al (2001) Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry. Spectrochim Acta B 56:1987–1993

    Article  Google Scholar 

  30. Kim M (2004) Determination of lead and cadmium in wines by graphite furnace atomic absorption spectrometry. Food Addit Contam 21:154–157

    Article  PubMed  CAS  Google Scholar 

  31. Bruno SNF, Campos RC, Curtius AJ (1994) Determination of lead and arsenic in wines by electrothermal atomic absorption spectrometry. J Anal At Spectrom 9:341–344

    Article  CAS  Google Scholar 

  32. Mindak WR (1994) Determination of lead in table wines by graphite furnace atomic absorption spectrometry. J AOAC Int 77:1023–1030

    PubMed  CAS  Google Scholar 

  33. Kristl J, Veber M, Slekovec M (2002) The application of ETAAS to the determination of Cr, Pb and Cd in samples taken during different stages of the winemaking process. Anal Bioanal Chem 373:200–204

    Article  PubMed  CAS  Google Scholar 

  34. Gonzálvez A, Llorens A, Cervera ML et al (2009) Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chem 112:26–34

    Article  Google Scholar 

  35. Moreno IM, González-Weller D, Gutierrez V et al (2008) Determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn in red wine samples by inductively coupled plasma optical emission spectroscopy: evaluation of preliminary sample treatments. Microchem J 88:56–61

    Article  CAS  Google Scholar 

  36. Pérez-López M, García Rodríguez G, Hernández-Moreno D et al (2010) Heavy metal (Pb, Cd) and metalloid (As) content in Spanish red wines with certified brand of origin. Toxicol Lett 196S:S37–S351

    Google Scholar 

  37. Šperková J, Suchánek M (2005) Multivariate classification of wines from different Bohemian regions (Czech Republic). Food Chem 93:659–663

    Article  Google Scholar 

  38. Pyrzyńska K (2004) Analytical methods for the determination of trace metals in wine. Crit Rev Anal Chem 34:69–83

    Article  Google Scholar 

  39. Fiket Ž, Mikac N, Kniewald G (2010) Arsenic and other trace elements in wines of eastern Croatia. Food Chem. doi:10.1016/j.foodchem.2010.11.091

    Google Scholar 

  40. Pérez-Jordán MY, Soldevila J, Salvador A et al (1998) Inductively coupled plasma mass spectrometry analysis of wines. J Anal At Spectrom 13:33–39

    Google Scholar 

  41. Vinković Vrček I, Bojić M, Žuntar I et al (2011) Phenol content, antioxidant activity and metal composition of Croatian wines deriving from organically and conventionally grown grapes. Food Chem 124:354–361

    Article  Google Scholar 

  42. Voica A, Dehelean A, Pamula A (2009) Method validation for determination of heavy metals in wine and slightly alcoholic beverages by ICP-MS. J Phys Conf Ser 182:012036

    Article  Google Scholar 

  43. Jakubowski N, Moens L, Vanhaecke J (1998) Sector field mass spectrometers in ICP-MS. Spectrochim Acta B 53:1739–1763

    Article  Google Scholar 

  44. Iglesias M, Gilon N, Poussel E et al (2002) Evaluation of an ICP-collision/reaction cell-MS system for the sensitive determination of spectrally interfered and non-interfered elements using the same gas conditions. J Anal At Spectrom 17:1240–1247

    Article  CAS  Google Scholar 

  45. Oehme M, Lund W (1979) Determination of cadmium, lead and copper in wine by differential pulse anodic stripping voltammetry. Fresenius Z Anal Chem 294:391–397

    Article  CAS  Google Scholar 

  46. Šeruga M, Names I, Laslavić B (2008) Heavy metals content of some Croatian wines. Deut Lebensm-Rundsch 11–12:46–55

    Google Scholar 

  47. Grindlay G, Mora J, Gras L et al (2009) Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry. Anal Chim Acta 652:154–160

    Article  PubMed  CAS  Google Scholar 

  48. Llobat-Estellés M, Mauri-Aucejo AR, Marin-Saez R (2006) Detection of bias errors in ETAAS. Determination of copper in beer and wine samples. Talanta 68:1640–1647

    Article  PubMed  Google Scholar 

  49. Stafilov T, Cvetković J, Arpadjan S et al (2002) ETAAS determination of some trace elements in wine. BAÜ Fen Bil Enst Dergisi 4.2

  50. Azenha MAGO, Vasconcelos MTSD (2000) Assessment of the Pb and Cu in vitro availability in wines by means of speciation procedures. Food Chem Toxicol 38:899–912

    Article  PubMed  CAS  Google Scholar 

  51. Karadjova I, Izgi B, Gucer S (2002) Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochim Acta B 57:581–590

    Article  Google Scholar 

  52. Sauvage L, Frank D, Stearne J et al (2002) Trace metal studies of selected white wines: an alternative approach. Anal Chim Acta 458:223–230

    Article  CAS  Google Scholar 

  53. Aceto M, Abollino O, Bruzzoniti MC et al (2002) Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review. Food Add Contam 19:126–133

    Article  CAS  Google Scholar 

  54. García-Esparza MA, Capri E, Pirzadeh P et al (2006) Copper content of grape and wine from Italian farms. Food Add Contam 23:274–280

    Article  Google Scholar 

  55. Ražić S, Todorović M, Holclajtner-Antunović I et al (1999) Determination of metal traces in wine by argon stabilized d.c. arc. Fresenius J Anal Chem 365:367–370

    Article  Google Scholar 

  56. Murányi Z, Kovács Z (2000) Statistical evaluation of aroma and metal content in Tokay wines. Microchem J 67:91–96

    Article  Google Scholar 

  57. Suturović ZJ, Marjanović NJ (1998) Determination of zinc, cadmium, lead and copper in wines by potentiometric stripping analysis. Nahrung 42:36–38

    Article  PubMed  Google Scholar 

  58. Mena CM, Cabrera C, Lorenzo ML et al (1997) Determination of lead contamination in Spanish wines and other alcoholic beverages by flow injection atomic absorption spectrometry. J Agric Food Chem 45:1812–1815

    Article  CAS  Google Scholar 

  59. Banović M, Kirin J, Ćurko N et al (2009) Influence of vintage on Cu, Fe, Zn and Pb content in some Croatian red wines. Czech J Food Sci 29:401–403

    Google Scholar 

  60. Ostapczuk P, Eschnauer HR, Scollary GR (1997) Determination of cadmium, lead and copper in wine by potentiometric stripping analysis. Fresenius J Anal Chem 358:723–727

    Article  CAS  Google Scholar 

  61. Tripković M, Todorović M, Holclajtner-Antunović I et al (2000) Spectrochemical determination of lead in wines. J Serb Chem Soc 65:323–329

    Google Scholar 

  62. Tariba B, Pizent A, Kljaković-Gašpić Z (2011) Determination of lead in Croatian wines by graphite furnace atomic absorption spectrometry. Arch Indhyg Occ Med 62:25–31

    CAS  Google Scholar 

  63. Mirlean M, Roisenberg A, Chies JO (2005) Copper-based fungicide contamination and metal distribution in Brazilian grape products. Bull Environ Contam Toxicol 75:968–974

    Article  PubMed  CAS  Google Scholar 

  64. Al Nasir FM, Jiries AG, Batarseh MI et al (2001) Pesticides and trace metal residue in grape and home made wine in Jordan. Environ Monit Assess 66:253–263

    Article  PubMed  CAS  Google Scholar 

  65. Šebečić B, Pavišić-Strache D, Vedrina-Dragojević I (1998) Trace elements in wine from Croatia. Deut Lebensm-Rundsch 94:341–344

    Google Scholar 

  66. Teissedre PL, Cabrera Vique C, Cabanis MT et al (1998) Determination of nickel in French wines and grapes. Am J Enol Vit 49:205–210

    CAS  Google Scholar 

  67. WHO (World Health Organization) (1977) Lead. Environmental health criteria 3. Geneva. http://www.inchem.org/documents/ehc/ehc/ehc003.htm. Accessed 14 Jul 2010

  68. WHO (World Health Organization) (1992) Cadmium. Environmental health criteria 134. Geneva. http://www.inchem.org/documents/ehc/ehc/ehc134.htm. Accessed 14 Jul 2010

  69. WHO (World Health Organization) (1998) Copper. Environmental health criteria 200. Geneva. http://www.inchem.org/documents/ehc/ehc/ehc200.htm. Accessed 14 Jul 2010

  70. Solfrizzi V, Colacicco AM, D’Introno A et al (2006) Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia. J Alzheimers Dis 10:303–330

    PubMed  Google Scholar 

  71. Berthon G (2002) Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  72. Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  PubMed  CAS  Google Scholar 

  73. Telišman S, Jurasović J, Pizent A et al (2001) Blood pressure in relation to biomarkers of lead, cadmium, copper, zinc, and selenium in men without occupational exposure to metals. Environ Res 87:57–68

    Article  PubMed  Google Scholar 

  74. Telišman S, Čolak B, Pizent A et al (2007) Reproductive toxicity of low-level lead exposure in men. Environ Res 105:256–266

    Article  PubMed  Google Scholar 

  75. Franz E, Römkens P, van Raamsdonk L et al (2008) A chain modelling approach to estimate the impact of soil cadmium pollution on human dietary exposure. J Food Prot 71:2504–2513

    PubMed  CAS  Google Scholar 

  76. Naughton DP, Petroczi A (2008) Heavy metal ions in wines: meta-analysis of target hazard quotients reveal health risks. Chem Cent J 2:22

    Article  PubMed  Google Scholar 

  77. Oreščanin V, Katunar A, Kutle A et al (2003) Heavy metals in soil, grape, and wine. J Trace Microprobe Techniques 21:171–180

    Article  Google Scholar 

  78. La Torre GL, La Pera L, Rando R et al (2008) Classification of Marcella wines according to their polyphenol, carbohydrate and heavy metal levels using canonical discriminant analysis. Food Chem 110:729–734

    Article  Google Scholar 

  79. Provenzano MR, El Bilali H, Simeone V et al (2010) Copper contents in grapes and wines from a Mediterranean organic vineyard. Food Chem 122:1338–1343

    Article  CAS  Google Scholar 

  80. MEHSCRC (Ministry of Education, Health and Social Care of the Republic of Croatia). Legislation on wine production (original in Croatian) (2005) Narodne novine 2 [online, 4 January]. http://narodne-novine.nn.hr/. Accessed 15 Jul 2010

Download references

Acknowledgments

The study was supported by the Ministry of Science and Technology of the Republic of Croatia (grant no. 022-0222411-2408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanka Tariba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tariba, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol Trace Elem Res 144, 143–156 (2011). https://doi.org/10.1007/s12011-011-9052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9052-7

Keywords

Navigation