Skip to main content
Log in

Optical waveguide lightmode spectroscopy technique–based immunosensor development for deoxynivalenol determination in wheat samples

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Contamination by deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, occurs in cereals worldwide; therefore, efforts have been made toward the development of rapid and sensitive methods for the detection of this compound. In our investigation, optical waveguide lightmode spectroscopy (OWLS) technique has been applied to label-free detection of DON in both competitive and in direct immunoassay formats using DON-specific polyclonal antibodies. After immobilizing the antibody or the antigen conjugate for the direct or indirect measurement, the sensor chip was used in a flow-injection analyzer system. The direct method was found to result in an unstable sensor response and sensitivity insufficient to determine DON in different grains. In contrast, a competitive immunosensor format provided reproducible quantitative detection in the sub-ppt range. For competitive sensor investigation with the sensitized chip, first the optimal dilution rate of polyclonal antibodies was determined. For the measurements, antibody stock solution was diluted to 8 μg mL−1. During the competitive measurement, standard solutions were mixed with the antibodies at the appropriate concentration, and the mixture was incubated for 1 min and injected into the OWLS system. The sensitive detection range of the competitive detection method was between 0.01 and 50 ng mL−1. After the establishment of the indirect method, spiked wheat flour samples were investigated. Results obtained with spiked samples showed that OWLS detection has a potential for quick determination of DON in wheat samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D’Mello JPF, Placinta CM, Macdonald AMC (1999) Anim Feed Sci Technol 80:183–205

    Article  Google Scholar 

  2. Schollenberger M, Müller HM, Rüfle M, Suchy S, Planck S, Drochner W (2005) Int J Food Microbiol 97:317–326

    Article  CAS  Google Scholar 

  3. Papadopoulou-Bouraoui A, Vrabcheva T, Valzacchi S, Stroka J, Anklam E (2004) Food Addit Contam 21:607–617

    Article  CAS  Google Scholar 

  4. Placinta CM, D’Mello JPF, Macdonald AMC (1999) Anim Feed Sci Technol 78:21–37

    Article  CAS  Google Scholar 

  5. Scott PM, Kanhere SR, Tarter EJ (1986) J Assoc Off Anal Chem 69:889

    CAS  Google Scholar 

  6. Jiménez M, Mateo R (1997) J Cromatogr A 778:363–372

    Article  Google Scholar 

  7. Krska R (1998) J Cromatogr A 815:49–57

    Article  CAS  Google Scholar 

  8. Onji Y, Aoki Y, Tani N, Umebayashi K, Kidata Y, Dohi Y (1998) J Chromatogr A 815:59–65

    Article  CAS  Google Scholar 

  9. Platiner RD, Maragos CM (2003) J AOAC Int 86:61–65

    Google Scholar 

  10. Vendl O, Berthiller F, Crews C, Krska R (2009) Anal Bioanal Chem 395:1347–1354

    Article  CAS  Google Scholar 

  11. Krska R, Baumagartner S, Josephs R (2001) Fresenius J Anal Chem 371:285–299

    Article  CAS  Google Scholar 

  12. Nakamura H, Karube I (2003) Anal Bioanal Chem 377:446–468

    Article  CAS  Google Scholar 

  13. Baeumner AJ (2003) Anal Bioanal Chem 377:434–445

    Article  CAS  Google Scholar 

  14. Ansari AA, Kaushik A, Solanki PR, Malhotra BD (2010) Bioelectrochemistry 77:75–81

    Article  CAS  Google Scholar 

  15. Mak AC, Osterfeld SJ, Yu H, Wang SH, Davis RW, Jejelowo OA, Pourmand N (2010) Biosens Bioelectron 25:1635–1639

    Article  CAS  Google Scholar 

  16. Actis P, Jejelowo OA, Pourmand N (2010) Biosens Bioelectron. doi:10.1016/bios.2010.08.016

  17. Gaag B, van der Spath S, Dietrich H, Stigter E, Boonzaaijer G, Osenbruggen T, Koopal K (2003) Food Control 14:251–254

    Article  Google Scholar 

  18. Kadota T, Takezawa Y, Hirano S, Tajima O, Maragos CM, Nakajima T, Tanaka T, Kamata Y, Sugita-Konishi Y (2010) Anal Chim Acta 673:173–178

    Article  CAS  Google Scholar 

  19. Brecht A, Gauglitz G (1997) Anal Chim Acta 347:219–233

    Article  CAS  Google Scholar 

  20. Tiefenthaler K (1992) Adv Biosens 2:261–281

    Google Scholar 

  21. Vörös J, Ramsden JJ, Csúcs G, Szendrő I, De Paul SM, Textor M, Spenser ND (2002) Biomaterials 23:3699–3710

    Article  Google Scholar 

  22. Luppa PB, Sokoll LJ, Chan DW (2001) Clin Chim Acta 314:1–26

    Article  CAS  Google Scholar 

  23. Duveneck GL, Abel AP, Bopp MA, Kresbach GM, Ehrat M (2002) Anal Chim Acta 469:49–61

    Article  CAS  Google Scholar 

  24. Lukosz W, Tiefenthaler K (1983) 2nd ECIO. Florence. IEE Conf Publ No. 227. London 152

  25. Ramsden JJ (1999) Chimia 53:67–71

    CAS  Google Scholar 

  26. Trummer N, Adányi N, Váradi M, Szendrő I (2001) Fresenius J Anal Chem 371:21–24

    Article  CAS  Google Scholar 

  27. Bradford M (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  28. Harboe N, Inglid A (1973) Scand J Immunol 2(suppl1):161–164

    Google Scholar 

  29. Székács A, Trummer N, Adányi N, Váradi M, Szendrő I (2003) Anal Chim Acta 487:31–42

    Article  Google Scholar 

  30. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364/5

Download references

Acknowledgments

This work was supported by the National Research and Technology Agency (EGERFOOD Regional Knowledge Centre) and by MicroVacuum Ltd. (http://www.microvacuum.com) by supplying OW2400 STO-coated sensor chips and measuring time on OWLS 100 instrument. The antibody was produced by the Unit of Biology (CFRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nóra Adányi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majer-Baranyi, K., Székács, A., Szendrő, I. et al. Optical waveguide lightmode spectroscopy technique–based immunosensor development for deoxynivalenol determination in wheat samples. Eur Food Res Technol 233, 1041–1047 (2011). https://doi.org/10.1007/s00217-011-1598-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1598-2

Keywords

Navigation