Skip to main content
Log in

Thermal inactivation kinetics of quality-related enzymes in cauliflower (Brassica oleracea var. botrytis )

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Thermal inactivation of quality-related enzymes in both cauliflower crude enzyme extracts and fresh tissue samples was studied in temperature range 50–100 °C. For crude enzyme extracts, several parameters, reaction rate constants (k) and activation energy (E a) as well as decimal reduction time (D) and (z) values, were used to characterize the thermal stability. The rates of inactivation were found to follow first-order inactivation kinetics. Activation energies varied between 101.18 and 208.42 kJ mol−1 with z values of 10.59–24.09 °C. The examined kinetics indicated that lipoxygenase was the most heat resistant followed by peroxidase, polyphenol oxidase, pectin methyl esterase and ascorbic acid oxidase. Furthermore, the obtained results from the blanched fresh tissues indicated that inactivation of lipoxygenase secured disappearing of any other enzyme activities. Therefore, this study recommends using lipoxygenase as an indicator enzyme to optimize the thermal treatments of cauliflower products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Das JR, Bhat SG, Gowda LR (1997) J Agric Food Chem 45:2031–2035

    Article  CAS  Google Scholar 

  2. Valero E, Garcia-Carmona F (1998) J Agric Food Chem 46:2447–2451

    Article  CAS  Google Scholar 

  3. Clemente E (1996) Ciênc Tecnol Aliment 16:1–5

    CAS  Google Scholar 

  4. Tijskens LMM, Rodis PS, Hertog ML ATM, Proxenia N, Dijk CV (1999) J Food Eng 39:167–177

    Article  Google Scholar 

  5. Anthon GE, Barrett DM (2002) J Agric Food Chem 50:4119–4125

    Article  CAS  Google Scholar 

  6. Adams J (1991) Food Chem 60:201–206

    Article  Google Scholar 

  7. Fils B, Sauvage FX, Nicolas J (1985) Sci Aliment 5:217–232

    CAS  Google Scholar 

  8. McEvily AJ, Iyengar R, Otwell WS (1992) Crit Rev Food Sci Nutr 32:253–273

    Article  CAS  Google Scholar 

  9. Williams DC, Lim MH, Chen AO, Pangborn RM, Whitaker JR (1986) Food Technol 40:130–140

    CAS  Google Scholar 

  10. Fachin D, Van Loey A, Indrawati I, Ludikhuyze L, Hendrickx M (2003) J Food Sci 67:1610–1615

    Article  Google Scholar 

  11. Sharma SR, Singh PK, Chable V, Tripathi SK (2005) J New Seeds 6:151–193

    Article  Google Scholar 

  12. Baardseth P, Naesset E (1989) Food Chem 32:39–46

    Article  CAS  Google Scholar 

  13. Fellows PJ (2000) Food processing technology, 2nd edn. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  14. Abu-Goukh AA, Bashir HA (2003) Food Chem 83:213–218

    Article  CAS  Google Scholar 

  15. Mazumdar BC, Majumder K (2003) Methods on physicochemical analysis of fruits. DAYA Publishing House, Delhi, p 163

    Google Scholar 

  16. Oktay M, Kufreviolglu I, Kocacalipkan I, Pakiroglu H (1995) J Food Sci 60:494–496

    Article  CAS  Google Scholar 

  17. Bonnet JL, Crouzet J (1977) J Food Sci 42:625–628

    Article  CAS  Google Scholar 

  18. Baker RA, Bruemmer JH (1968) Proc Fla State Hort Soc 81:269. http://www.calzyme.com. Accessed Dec 2003

  19. Jiang CM, Wu CL, Chang HM (2003) J Food Sci 68:1590–1594

    Article  CAS  Google Scholar 

  20. Gross KC (1982) Hort-Science 17:933–934

    CAS  Google Scholar 

  21. Lee CY, Pennesi AP (1984) J Food Sci 49:1616–1617

    Article  CAS  Google Scholar 

  22. Chattopadhyay K, Mazumdar S (2000) Biochemistry 39:263–270

    Article  CAS  Google Scholar 

  23. Khan AA, Robinson DS (1993) Food Chem 47:53–59

    Article  CAS  Google Scholar 

  24. Neves VA, Lourenço EJ (1998) Braz Arch Biol Technol 41:179–186

    CAS  Google Scholar 

  25. Neves VA (2002) Braz Arch Biol Technol 45:7–16

    Article  CAS  Google Scholar 

  26. Lee CY, Pennesi AP, Dickson MH (1984) J Agric Food Chem 32:18–21

    Article  CAS  Google Scholar 

  27. Ganthavorn C, Nagal C, Powers JR (1991) J Food Sci 56:47–49

    Article  CAS  Google Scholar 

  28. Regaldo C, Arvizu OP, Garcia-Almendarez BE, Whitaker JR (1999) J Food Biochem 23:435–450

    Article  Google Scholar 

  29. Thongsook T, Barrett DM (2005) J Agric Food Chem 53:3215–3222

    Article  CAS  Google Scholar 

  30. Holdsworth SD (1992) Aseptic processing and packaging of food products. Elsevier Applied Science, London

    Google Scholar 

  31. Gkinis AM, Fennema OR (1978) J Food Sci 43(2):527–531

    Article  CAS  Google Scholar 

  32. McLellan KM, Robinson DS (1981) Food Chem 7:257–266

    Article  CAS  Google Scholar 

  33. Vámos-Vigyázó L (1981) CRC Crit Rev Food Sci Nutr 15:49–127

    Article  Google Scholar 

  34. Kampis A, Bartucz-Kovács O, Hoschke A, Vámos-Vigyázo L (1984) Lebensm Wiss Technol 17:293–295

    CAS  Google Scholar 

  35. Liu EH, Lamport DTA (1974) Plant Physiol 54:870–876

    Article  CAS  Google Scholar 

  36. Blain JA, Patterson JDE, Pearce M (1968) J Sci Food Agric 19:713–717

    Article  CAS  Google Scholar 

  37. Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx ME, Tobback PP (1998) Lebensm Wiss Technol 31:44–49

    Article  CAS  Google Scholar 

  38. Gomez-Lopez VM (2002) Food Chem 77:163–169

    Article  CAS  Google Scholar 

  39. Mdluli KM (2005) Food Chem 92:311–323

    Article  CAS  Google Scholar 

  40. McCord JD, Kilara A (1983) J Food Sci 48:1479–1484

    Article  CAS  Google Scholar 

  41. Aquilera JM, Oppermann K, Sanchez F (1987) J Food Sci 52:990–993

    Article  Google Scholar 

  42. Ansah YJO (1989) J Agric Food Chem 37:901–904

    Article  Google Scholar 

  43. Tadaaki W, Yukio S (2003) J Cookery Sci Jpn 36:243–248

    Google Scholar 

  44. Gokmen V, Bahceci KS, Serpen A, Acar J (2005) Lebensm Wiss Technol 38:903–908

    Google Scholar 

  45. Borhan M, Synder HE (1979) J Food Sci 38:40–42

    Google Scholar 

  46. Park KH, Kim YM, Lee CW (1988) J Agric Food Chem 36:1012–1014

    Article  CAS  Google Scholar 

  47. Morales-Blancas EE, Chandia VE, Cisneros-Zevallos L (2002) J Food Sci 67:146–154

    Article  CAS  Google Scholar 

  48. Anthon GE, Barrett DM (2003) Food Chem 81:275–279

    Article  CAS  Google Scholar 

  49. Indrawati I, Van Loey AM, Ludikhuyze LR, Hendrickx ME (1999) Biotechnol Prog 15:273–277

    Article  CAS  Google Scholar 

  50. Busto MD, Owusu-Apenten RK, Robinson DS, Wu Z, Casey R, Hughes RK (1999) Food Chem 65:323–329

    Article  CAS  Google Scholar 

  51. Indrawati I, Van Loey AM, Ludikhuyze LR, Hendrickx ME (2000) J Agric Food Chem 48:1850–1859

    Article  CAS  Google Scholar 

  52. Indrawati I, Van Loey AM, Ludikhuyze LR, Hendrickx ME (2001) J Food Sci 66:686–693

    Article  CAS  Google Scholar 

  53. Anese M, Sovrano S (2006) Food Chem 95:131–137

    Article  CAS  Google Scholar 

  54. Murao S, Itoh H, Ymima T, Ozaki Y, Fukuyasu S, Shin T (1992) Biosci Biotechnol Biochem 56:847–852

    Article  CAS  Google Scholar 

  55. Saari NB, Fujita S, Haragchi K, Tono T (1994) J Sci Food Agric 65:153–156

    Article  Google Scholar 

  56. Saari NB, Fujita S, Haragchi K, Miyazoe R, Tono T (1995) J Sci Food Agric 68:515–519

    Article  CAS  Google Scholar 

  57. Saari NB, Fujita S, Miyazoe R, Okugawa M (1995) J Food Biochem 19:321–327

    Article  Google Scholar 

  58. Munyaka AW, Makule EE, Oey I, Loey AY, Hendrickx M (2010) J Food Sci 75:336–340

    Article  Google Scholar 

  59. Versteeg C, Rombouts FM, Spaansen CH, Pilnik W (1980) J Food Sci 45:969–971

    Article  CAS  Google Scholar 

  60. Ly-Nguyen B, Van Loey AM, Fachin D, Verlent I, Duvetter T, Vu ST, Smout C, Hendrickx ME (2002) Biotechnol Prog 18:1447–1450

    Article  CAS  Google Scholar 

  61. Anthon GE, Sekine Y, Watanabe N, Barrett DN (2002) J Agric Food Chem 50:6153–6159

    Article  CAS  Google Scholar 

  62. Denes J, Baron A, Drilleau J (2000) J Sci Food Agric 80:1503–1509

    Article  CAS  Google Scholar 

  63. Leite KMS, Tadiotti AC, Baldochi D, Oliveira OMMF (2006) Food Chem 94:565–572

    Article  CAS  Google Scholar 

  64. Pilink W, Voragen AGJ (1993) In: Nagodawithana T, Reed G (eds) Enzymes in food processing. Academic Press, London, pp 363–399

  65. King DL, Klein BP (1987) J Food Sci 52:220–221

    Article  CAS  Google Scholar 

  66. Barrett DM, Theerakulkait C (1995) Food Technol 49:62–65

    Google Scholar 

  67. Nagy-Gasztonyi M, Kardos-Neumann A, Biacs PA (2000) Acta Aliment 29:181–186

    Article  CAS  Google Scholar 

  68. Sheu SC, Chen AO (1991) J Food Sci 56:448–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. M. Rayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayan, A.M.M., Gab-Alla, A.A., Shatta, A.A. et al. Thermal inactivation kinetics of quality-related enzymes in cauliflower (Brassica oleracea var. botrytis ) . Eur Food Res Technol 232, 319–326 (2011). https://doi.org/10.1007/s00217-010-1391-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1391-7

Keywords

Navigation