Skip to main content
Log in

Obtaining Extracts and Hydrolysates from Cambuci Peel Through Subcritical Water: An In-line Detection Approach

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The cambuci is a fruit that has been attracting interest due to its rich composition of phenolic compounds. However, the fruit’s peel is an understudied agro-industrial by-product. This study is aimed at assessing the effects of temperature and pH in an innovative system. This system integrates an in-line UV-VIS analysis detector into the process of extracting and hydrolyzing bioactive compounds from cambuci peel, enhancing process monitoring. The system operated with 2 g of cambuci peel in the reactor for 60 min, using a water flow rate of 2 mL min−1, 15 MPa, temperatures ranging from 40 to 160 °C, and pH levels from 4 to 7. The results indicated that increasing the temperature led to a more favorable response in total phenolic compounds (TPC) and the antioxidant capacity of the samples. At the same time, the selected pH range had a minimal impact. Furthermore, the obtained material revealed the presence of citric acid, glucose, arabinose, and fructose, with fructose showing the highest concentration. The in-line coupling system proved to be highly effective in real-time monitoring and determining the completion of the extraction or hydrolysis process, as it allowed for the observation of decreasing concentrations of the compounds of interest. Thus, this study contributes to the understanding and optimization of the extraction of bioactive compounds from cambuci peel, providing valuable insights for future applications in the food and natural products industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Agcam, E. (2022). A kinetic approach to explain hydroxymethylfurfural and furfural formations induced by Maillard, caramelization, and ascorbic acid degradation reactions in fruit juice-based mediums. Food Analytical Methods, 15(5), 1286–1299. https://doi.org/10.1007/s12161-021-02214-x

    Article  Google Scholar 

  • Aguilar-Zárate, P., Wong-Paz, J. E., Michel, M., Buenrostro-Figueroa, J., Díaz, H. R., Ascacio, J. A., Contreras-Esquivel, J. C., Gutiérrez-Sánchez, G., & Aguilar, C. N. (2017). Characterisation of pomegranate-husk polyphenols and semi-preparative fractionation of punicalagin. Phytochemical Analysis, 28(5), 433–438. https://doi.org/10.1002/pca.2691

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, R., & Chun, B. S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. The Journal of Supercritical Fluids, 141, 88–96. https://doi.org/10.1016/J.SUPFLU.2018.03.006

    Article  CAS  Google Scholar 

  • Akter, S., Hong, H., Netzel, M., Tinggi, U., Fletcher, M., Osborne, S., & Sultanbawa, Y. (2021). Determination of ellagic acid, punicalagin, and castalagin from Terminalia ferdinandiana (Kakadu plum) by a validated UHPLC-PDA-MS/MS methodology. Food Analytical Methods, 14(12), 2534–2544. https://doi.org/10.1007/s12161-021-02063-8

    Article  Google Scholar 

  • Ali, M. C., Chen, J., Zhang, H., Li, Z., Zhao, L., & Qiu, H. (2019). Effective extraction of flavonoids from lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta, 203, 16–22. https://doi.org/10.1016/J.TALANTA.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  • Angonese, M., Motta, G. E., Silva de Farias, N., Molognoni, L., Daguer, H., Brugnerotto, P., de Oliveira Costa, A. C., & Olivera Müller, C. M. (2021). Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. LWT, 149, 111924. https://doi.org/10.1016/J.LWT.2021.111924

    Article  CAS  Google Scholar 

  • AOAC. (2012). Official methods of analysis of AOAC international (19th ed.). Association of Official Analytical Chemistry, Arlington, VA. The USA.

  • Arslan, D., Steinbusch, K. J. J., Diels, L., Hamelers, H. V. M., Strik, D. P. B. T. B., Buisman, C. J. N., & de Wever, H. (2016). Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations. Critical Reviews in Environmental Science and Technology, 46(6), 592–634. https://doi.org/10.1080/10643389.2016.1145959

    Article  CAS  Google Scholar 

  • Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J. A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., & Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798. https://doi.org/10.1016/J.FOODRES.2015.09.015

    Article  Google Scholar 

  • Barbieri, S. F., Ruthes, A. C., de Petkowicz, C. L., & O., de Godoy, R. C. B., Sassaki, G. L., Santana Filho, A. P., & Silveira, J. L. M. (2017). Extraction, purification and structural characterization of a galactoglucomannan from the gabiroba fruit (Campomanesia xanthocarpa Berg), Myrtaceae family. Carbohydrate Polymers, 174, 887–895. https://doi.org/10.1016/J.CARBPOL.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  • Barros, L., Dueñas, M., Pinela, J., Carvalho, A. M., Buelga, C. S., & Ferreira, I. C. F. R. (2012). Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in Northeastern Portugal homegardens. Plant Foods for Human Nutrition, 67(3), 229–234. https://doi.org/10.1007/s11130-012-0307-z

    Article  CAS  PubMed  Google Scholar 

  • Barroso, T. L. C. T., da Rosa, R. G., Sganzerla, W. G., Castro, L. E. N., Maciel-Silva, F. W., Rostagno, M. A., & Forster-Carneiro, T. (2022a). Hydrothermal pretreatment based on semi-continuous flow-through sequential reactors for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) peel. The Journal of Supercritical Fluids, 191, 105766. https://doi.org/10.1016/J.SUPFLU.2022.105766

    Article  CAS  Google Scholar 

  • Barroso, T., Sganzerla, W., Rosa, R., Castro, L., Maciel-Silva, F., Rostagno, M., & Forster-Carneiro, T. (2022b). Semi-continuous flow-through hydrothermal pretreatment for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) agro-industrial by-product. Food Research International, 158, 111547. https://doi.org/10.1016/J.FOODRES.2022.111547

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/ABIO.1996.0292

    Article  CAS  PubMed  Google Scholar 

  • Bodoira, R., Velez, A., Rovetto, L., Ribotta, P., Maestri, D., & Martínez, M. (2019). Subcritical fluid extraction of antioxidant phenolic compounds from pistachio ( Pistacia vera L.) nuts: Experiments, modeling, and optimization. Journal of Food Science, 84(5), 963–970. https://doi.org/10.1111/1750-3841.14507

    Article  CAS  PubMed  Google Scholar 

  • Bunmusik, W., Suttiarporn, P., Phankaew, T., Thitisut, P., & Seangwattana, T. (2022). The effects of solvent–based ultrasonic–assisted extraction of bioactive compounds and antioxidant activities from pigmented rice bran. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2022.11.391

    Article  Google Scholar 

  • Carocho, M., Barros, L., Bento, A., Santos-Buelga, C., Morales, P., & Ferreira, I. C. F. R. (2014). Castanea sativa Mill. flowers amongst the most powerful antioxidant matrices: A phytochemical approach in decoctions and infusions. BioMed Research International, 2014, 1–7. https://doi.org/10.1155/2014/232956

    Article  CAS  Google Scholar 

  • Castro, L. E. N., Sganzerla, W. G., Barroso, T. L. C. T., Maciel-Silva, F. W., Colpini, L. M. S., Bittencourt, P. R. S., Rostagno, M. A., & Forster-Carneiro, T. (2023). Improving the semi-continuous flow-through subcritical water hydrolysis of grape pomace (Vitis vinifera L) by pH and temperature control. The Journal of Supercritical Fluids, 196, 105894. https://doi.org/10.1016/j.supflu.2023.105894

    Article  CAS  Google Scholar 

  • Chanioti, S., & Tzia, C. (2018). Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innovative Food Science & Emerging Technologies, 48, 228–239. https://doi.org/10.1016/J.IFSET.2018.07.001

    Article  CAS  Google Scholar 

  • Chen, Y., Pinegar, L., Immonen, J., & Powell, K. M. (2023). Conversion of food waste to renewable energy: A techno-economic and environmental assessment. Journal of Cleaner Production, 385, 135741. https://doi.org/10.1016/J.JCLEPRO.2022.135741

    Article  Google Scholar 

  • Cocero, M. J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C. M., & Pazo-Cepeda, M. V. (2018). Understanding biomass fractionation in subcritical & supercritical water. The Journal of Supercritical Fluids, 133, 550–565. https://doi.org/10.1016/J.SUPFLU.2017.08.012

    Article  CAS  Google Scholar 

  • Cvjetko Bubalo, M., Ćurko, N., Tomašević, M., Kovačević Ganić, K., & Radojcic Redovnikovic, I. (2016). Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chemistry, 200, 159–166. https://doi.org/10.1016/J.FOODCHEM.2016.01.040

    Article  CAS  PubMed  Google Scholar 

  • Da Silva, L. C., Viganó, J., Sanches, V. L., De Souza Mesquita, L. M., Pizani, R., & Rostagno, M. A. (2023). Simultaneous extraction and analysis of apple pomace by gradient pressurized liquid extraction coupled in-line with solid-phase extraction and on-line with HPLC. Food Chemistry, 407, 135117. https://doi.org/10.1016/j.foodchem.2022.135117

    Article  CAS  PubMed  Google Scholar 

  • da Silveira, A. C., Kassuia, Y. S., Domahovski, R. C., & Lazzarotto, M. (2018). Método de DPPH adaptado: Uma ferramenta para analisar atividade antioxidante de polpa de frutos da erva-mate de forma rápida e reprodutível. In Embrapa Florestas-Comunicado Técnico (INFOTECA-E); Comunicado Técnico (CNPF): Colombo, Sri Lanka..

  • Damiani, C., de Vilas Boas, E. V., Asquieri, E. R., Lage, M. E., Oliveira, R. A., da Silva, F. A., Oliveira, D. M., Rodrigues, L. J., Silva, E. P., & de Paula, N. R. (2011). Characterization of fruits from the savanna: Araça (Psidium guinnensis Sw.) and Marolo (Annona crassiflora Mart.). Ciência e Tecnologia de Alimentos, 31(3), 723–729. https://doi.org/10.1590/S0101-20612011000300026

    Article  Google Scholar 

  • Donado-Pestana, C. M., Belchior, T., Festuccia, W. T., & Genovese, M. I. (2015). Phenolic compounds from cambuci (Campomanesia phaea O. Berg) fruit attenuate glucose intolerance and adipose tissue inflammation induced by a high-fat, high-sucrose diet. Food Research International, 69, 170–178. https://doi.org/10.1016/J.FOODRES.2014.12.032

    Article  CAS  Google Scholar 

  • Donado-Pestana, C. M., Moura, M. H. C., de Araujo, R. L., de Lima Santiago, G., de Moraes Barros, H. R., & Genovese, M. I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. https://doi.org/10.1016/J.COFS.2018.01.001

    Article  Google Scholar 

  • Donado-Pestana, C. M., Pessoa, E. V. M., Rodrigues, L., Rossi, R., Moura, M. H. C., dos Santos-Donado, P. R., Castro, É., Festuccia, W. T., & Genovese, M. I. (2021). Polyphenols of cambuci (Campomanesia phaea (O. Berg.)) fruit ameliorate insulin resistance and hepatic steatosis in obese mice. Food Chemistry, 340, 128169. https://doi.org/10.1016/J.FOODCHEM.2020.128169

    Article  CAS  PubMed  Google Scholar 

  • Farouk, A., Elbehery, H., Embaby, H., Abdel-aziz, N. F., Abd El-wahab, T., Abouamer, W., & Hussein, H. (2023). Phenolics from Nigella sativa L. straw: Characterization and insecticidal activity against Agrotis ipsilon (Hüfnagel). Heliyon, 9(12), e22995. https://doi.org/10.1016/j.heliyon.2023.e22995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, V. C., Sganzerla, W. G., Barroso, T. L. C. T., Castro, L. E. N., Colpini, L. M. S., & Forster-Carneiro, T. (2023). Sustainable valorization of pitaya (Hylocereus spp.) peel in a semi-continuous high-pressure hydrothermal process to recover value-added products. Food Research International, 173, 113332. https://doi.org/10.1016/J.FOODRES.2023.113332

    Article  CAS  PubMed  Google Scholar 

  • Gan, A., & Baroutian, S. (2022). Subcritical water extraction for recovery of phenolics and fucoidan from New Zealand Wakame (Undaria pinnatifida) seaweed. The Journal of Supercritical Fluids, 190, 105732. https://doi.org/10.1016/J.SUPFLU.2022.105732

    Article  CAS  Google Scholar 

  • García-Villalba, R., Espín, J. C., Aaby, K., Alasalvar, C., Heinonen, M., Jacobs, G., Voorspoels, S., Koivumäki, T., Kroon, P. A., Pelvan, E., Saha, S., & Tomás-Barberán, F. A. (2015). Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. Journal of Agricultural and Food Chemistry, 63(29), 6555–6566. https://doi.org/10.1021/acs.jafc.5b02062

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist, A., & Nobbs, J. (2017). Colorimetry, theory. Encyclopedia of Spectroscopy and Spectrometry. https://doi.org/10.1016/B978-0-12-803224-4.00124-2

    Article  Google Scholar 

  • Giombelli, C., Iwassa, I. J., da Silva, C., & Bolanho Barros, B. C. (2020). Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. The Journal of Supercritical Fluids, 165, 104985. https://doi.org/10.1016/j.supflu.2020.104985

    Article  CAS  Google Scholar 

  • Grimaldi, M., Pitirollo, O., Ornaghi, P., Corradini, C., & Cavazza, A. (2022). Valorization of agro-industrial byproducts: Extraction and analytical characterization of valuable compounds for potential edible active packaging formulation. Food Packaging and Shelf Life, 33, 100900. https://doi.org/10.1016/J.FPSL.2022.100900

    Article  CAS  Google Scholar 

  • He, S., Zhang, Z., Sun, H., Zhu, Y., Zhao, J., Tang, M., Wu, X., & Cao, Y. (2019). Contributions of temperature and l-cysteine on the physicochemical properties and sensory characteristics of rapeseed flavor enhancer obtained from the rapeseed peptide and d-xylose Maillard reaction system. Industrial Crops and Products, 128, 455–463. https://doi.org/10.1016/J.INDCROP.2018.11.048

    Article  CAS  Google Scholar 

  • Herbst, G., Hamerski, F., Errico, M., Corazza, L., & M. (2021). Pressurized liquid extraction of brewer’s spent grain: Kinetics and crude extracts characterization. Journal of Industrial and Engineering Chemistry, 102, 370–383. https://doi.org/10.1016/J.JIEC.2021.07.020

    Article  CAS  Google Scholar 

  • Jeong, Y. R., Park, J. S., Nkurunziza, D., Cho, Y. J., & Chun, B. S. (2021). Valorization of blue mussel for the recovery of free amino acids rich products by subcritical water hydrolysis. The Journal of Supercritical Fluids, 169, 105135. https://doi.org/10.1016/J.SUPFLU.2020.105135

    Article  CAS  Google Scholar 

  • Jha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology, 119, 579–591. https://doi.org/10.1016/J.TIFS.2021.11.019

    Article  CAS  Google Scholar 

  • Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/J.ULTSONCH.2020.105325

    Article  CAS  PubMed  Google Scholar 

  • Lachos-Perez, D., Baseggio, A. M., Torres-Mayanga, P. C., Ávila, P. F., Tompsett, G. A., Marostica, M., Goldbeck, R., Timko, M. T., Rostagno, M., Martinez, J., & Forster-Carneiro, T. (2020). Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. The Journal of Supercritical Fluids, 160, 104789. https://doi.org/10.1016/J.SUPFLU.2020.104789

    Article  CAS  Google Scholar 

  • Li, Q., Li, X., Ren, Z., Wang, R., Zhang, Y., Li, J., Ma, F., & Liu, X. (2021). Physicochemical properties and antioxidant activity of Maillard reaction products derived from Dioscorea opposita polysaccharides. LWT, 149, 111833. https://doi.org/10.1016/J.LWT.2021.111833

    Article  CAS  Google Scholar 

  • Maciel-Silva, F. W., Lachos-Perez, D., Buller, L. S., Sganzerla, W. G., Pérez, M., Rostagno, M. A., & Forster-Carneiro, T. (2022). Green extraction processes for complex samples from vegetable matrices coupled with on-line detection system: A critical review. Molecules, 27(19), 6272. https://doi.org/10.3390/molecules27196272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciel-Silva, F. W., Mussatto, S. I., & Forster-Carneiro, T. (2019). Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. Journal of Cleaner Production, 228, 1131–1142. https://doi.org/10.1016/J.JCLEPRO.2019.04.362

    Article  CAS  Google Scholar 

  • Martins-Vieira, J. C., Torres-Mayanga, P. C., & Lachos-Perez, D. (2023). Hydrothermal processing of lignocellulosic biomass: An overview of subcritical and supercritical water hydrolysis. BioEnergy Research, 16(3), 1296–1317. https://doi.org/10.1007/s12155-022-10553-8

    Article  CAS  Google Scholar 

  • Mesquita, P. C., Rodrigues, L. G. G., Mazzutti, S., Ribeiro, P. R. V., de Brito, E. S., & Lanza, M. (2022). Untargeted metabolomic profile of recovered bioactive compounds by subcritical water extraction of acerola (Malpighia emarginata DC.) pomace. Food Chemistry, 397, 133718. https://doi.org/10.1016/j.foodchem.2022.133718

    Article  CAS  PubMed  Google Scholar 

  • Murugan, A., Rubavathi, A., Kannan, V., & Parthiban, A. (2020). Bioconversion of mango pulp industrial waste into ellagic acid using Aspergillus niger. BioRxiv, 2020.03.17.996074. https://doi.org/10.1101/2020.03.17.996074

  • Murugesan, K., Srinivasan, K. R., Paramasivam, K., Selvam, A., & Wong, J. (2021). Conversion of food waste to animal feeds. Current Developments in Biotechnology and Bioengineering: Sustainable Food Waste Management: Resource Recovery and Treatment. https://doi.org/10.1016/B978-0-12-819148-4.00011-7

    Article  Google Scholar 

  • Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153(2), 375–380. https://doi.org/10.1016/S0021-9258(18)71980-7

    Article  CAS  Google Scholar 

  • Ohta, N., & Robertson, A. R. (2006). Color Vision and Color Specification Systems. In M.A. Kriss, N. Ohta, & A.R. Robertson (Eds), Colorimetry. https://doi.org/10.1002/0470094745.ch2

  • Oliveira, T. C. G., Hanlon, K. E., Interlandi, M. A., Torres-Mayanga, P. C., Silvello, M. A. C., Lachos-Perez, D., Timko, M. T., Rostagno, M. A., Goldbeck, R., & Forster-Carneiro, T. (2020). Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. The Journal of Supercritical Fluids, 164, 104916. https://doi.org/10.1016/J.SUPFLU.2020.104916

    Article  CAS  Google Scholar 

  • Oliveira, V. B., Yamada, L. T., Fagg, C. W., & Brandão, M. G. L. (2012). Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Research International, 48(1), 170–179. https://doi.org/10.1016/J.FOODRES.2012.03.011

    Article  CAS  Google Scholar 

  • Osamede Airouyuwa, J., Mostafa, H., Riaz, A., & Maqsood, S. (2022). Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters. Ultrasonics Sonochemistry, 91, 106233. https://doi.org/10.1016/J.ULTSONCH.2022.106233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özkaynak Kanmaz, E. (2018). 5-Hydroxymethylfurfural (HMF) formation during subcritical water extraction. Food Science and Biotechnology, 27(4), 981–986. https://doi.org/10.1007/s10068-018-0328-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paes, M. S., de Pessoa Filho, P., & Tadini, C. C. (2021). Sorption properties of cambuci (Campomanesia phaea O. Berg) untreated and pre-treated with sorbitol as osmotic solute. LWT, 139, 110569. https://doi.org/10.1016/J.LWT.2020.110569

    Article  CAS  Google Scholar 

  • Park, S. H., Kim, J.-H., Min, S.-G., Jo, Y.-J., & Chun, J.-Y. (2015). Effects of ethanol addition on the efficiency of subcritical water extraction of proteins and amino acids from porcine placenta. Korean Journal for Food Science of Animal Resources, 35(2), 265–271. https://doi.org/10.5851/kosfa.2015.35.2.265

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattnaik, F., Nanda, S., Kumar, V., Naik, S., & Dalai, A. K. (2021). Subcritical water hydrolysis of Phragmites for sugar extraction and catalytic conversion to platform chemicals. Biomass and Bioenergy, 145, 105965. https://doi.org/10.1016/j.biombioe.2021.105965

    Article  CAS  Google Scholar 

  • Pińkowska, H., Krzywonos, M., Wolak, P., Seruga, P., Górniak, A., Złocińska, A., & Ptak, M. (2020). Sustainable production of 5-hydroxymethylfurfural from pectin-free sugar beet pulp in a simple aqueous phase system-optimization with Doehlert design. Energies, 13(21), 5649. https://doi.org/10.3390/en13215649

    Article  CAS  Google Scholar 

  • Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 334, 127521. https://doi.org/10.1016/J.FOODCHEM.2020.127521

    Article  CAS  PubMed  Google Scholar 

  • Rahmani, M., Azadbakht, M., Dastar, B., & Esmaeilzadeh, E. (2022). Production of animal feed from food waste or corn? Analyses of energy and exergy. Bioresource Technology Reports, 20, 101213. https://doi.org/10.1016/J.BITEB.2022.101213

    Article  CAS  Google Scholar 

  • Rojas-González, A. F., Flórez-Montes, C., & López-Rodríguez, D. F. (2019). Use prospects of some agroindustrial waste. Revista Cubana De Química, 31(1), 31–52.

    Google Scholar 

  • Saldanha, L., Vilegas, W., & Dokkedal, A. (2013). Characterization of flavonoids and phenolic acids in Myrcia bella Cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules, 18(7), 8402–8416. https://doi.org/10.3390/molecules18078402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanches, M. C. R. (2013). Caracterização do fruto de cambuci (Campomanesia phaea O. Berg.) e efeito da destanização sobre o potencial funcional in vitro Masters dissertation, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo. https://doi.org/10.11606/D.9.2013.tde-01082013-111601

  • Sanches Azevedo, M. C., Silva, R. R. E., Jacomino, A. P., & Genovese, M. I. (2017). Physicochemical variability of cambuci fruit (Campomanesia phaea) from the same orchard, from different locations and at different ripening stages. Journal of the Science of Food and Agriculture, 97(2), 526–535. https://doi.org/10.1002/jsfa.7756

    Article  CAS  PubMed  Google Scholar 

  • Schiassi, M. C. E. V., de Souza, V. R., Lago, A. M. T., Campos, L. G., & Queiroz, F. (2018). Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry, 245, 305–311. https://doi.org/10.1016/j.foodchem.2017.10.104

    Article  CAS  PubMed  Google Scholar 

  • Seraglio, S. K. T., Schulz, M., Nehring, P., Della Betta, F., Valese, A. C., Daguer, H., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2018). Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chemistry, 239, 649–656. https://doi.org/10.1016/J.FOODCHEM.2017.06.118

    Article  CAS  PubMed  Google Scholar 

  • Sganzerla, W. G., Viganó, J., Castro, L. E. N., Maciel-Silva, F. W., Rostagno, M. A., Mussatto, S. I., & Forster-Carneiro, T. (2022). Recovery of sugars and amino acids from brewers’ spent grains using subcritical water hydrolysis in a single and two sequential semi-continuous flow-through reactors. Food Research International, 157, 111470. https://doi.org/10.1016/J.FOODRES.2022.111470

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. P., & Saldaña, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 44(8), 2452–2458. https://doi.org/10.1016/J.FOODRES.2011.02.006

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  • Song, R., Ismail, M., Baroutian, S., & Farid, M. (2018). Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food and Bioprocess Technology, 11(10), 1895–1903. https://doi.org/10.1007/s11947-018-2151-0

    Article  CAS  Google Scholar 

  • Souza Ronchi, H. (2021). Cadeia produtiva dos frutos da Campomanesia phaea (cambuci): Prospecção de produtos medicinais, aromáticos e alimentícios e sua inserção no mercado. Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo.

  • Stefanello, M. É. A., Pascoal, A. C. R. F., & Salvador, M. J. (2011). Essential oils from neotropical Myrtaceae: Chemical diversity and biological properties. Chemistry & Biodiversity, 8(1), 73–94. https://doi.org/10.1002/cbdv.201000098

    Article  CAS  Google Scholar 

  • Tokairin, T. D., Silva, A. P., Spricigo, P. C., Alencar, S. M., & Jacomino, A. P. (2018). Cambuci: A native fruit from the Brazilian Atlantic forest showed nutraceutical characteristics. Revista Brasileira de Fruticultura. https://doi.org/10.1590/0100-29452018666

    Article  Google Scholar 

  • Vedovatto, F., Ugalde, G., Bonatto, C., Bazoti, S. F., Treichel, H., Mazutti, M. A., Zabot, G. L., & Tres, M. V. (2021). Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars. The Journal of Supercritical Fluids, 167, 105043. https://doi.org/10.1016/J.SUPFLU.2020.105043

    Article  CAS  Google Scholar 

  • Yao, G. Y., Chen, X. P., Long, Z. Y., Du, X. B., Liang, J. Z., Wei, X. J., & Wang, L. L. (2023). The non-enzymatic browning of pine bark during thermal treatment: Color and chemical changes, color kinetics and insights into mechanisms. Industrial Crops and Products, 204, 117289. https://doi.org/10.1016/J.INDCROP.2023.117289

    Article  CAS  Google Scholar 

  • Yee, L. K., & A., Razali, M., Ismail, M. A. M., Yusoff, I. N., Nagendran, S. K., Zainal, Z., Tobe, H., Date, K., & Yokota, Y. (2023). Preliminary analysis of rock mass weathering grade using image analysis of CIELAB color space with the validation of Schmidt hammer: A case study. Physics and Chemistry of the Earth, Parts A/B/C, 129, 103291. https://doi.org/10.1016/j.pce.2022.103291

    Article  Google Scholar 

  • Yeo, J., & Shahidi, F. (2019). Critical re-evaluation of DPPH assay: Presence of pigments affects the results. Journal of Agricultural and Food Chemistry, 67(26), 7526–7529. https://doi.org/10.1021/acs.jafc.9b02462

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology, 95, 183–195. https://doi.org/10.1016/j.tifs.2019.11.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received support from Brazilian Science and Research Foundation (CNPq) (productivity grant 302451/2021-8 and 302610/2021-9) and São Paulo Research Foundation (FAPESP) number 2018/14938-4 (Tânia Forster Carneiro), 2018/14582-5 (Mauricio Ariel Rostagno), 2020/03623-2 (Letícia Sanches Contieri), 2022/11690-7 (Leonardo de Freitas Marinho), 2023/02064-8 (Tiago Linhares Cruz Tabosa Barroso), and 2023/04479-0 (Juver Andrey Jimenez Moreno). The authors thank the Multiuser Central Facilities (UFABC) for the experimental support.

Funding

This study received support from Brazilian Science and Research Foundation (CNPq) (productivity grant 302451/2021-8 and 302610/2021-9) and São Paulo Research Foundation (FAPESP) number 2018/14938-4 (Tânia Forster Carneiro), 2018/14582-5 (Mauricio Ariel Rostagno), 2020/03623-2 (Letícia Sanches Contieri), 2022/11690-7 (Leonardo de Freitas Marinho), 2023/02064-8 (Tiago Linhares Cruz Tabosa Barroso), and 2023/04479-0 (Juver Andrey Jimenez Moreno).

Author information

Authors and Affiliations

Authors

Contributions

J.A.J.M: Conceptualization, Methodology, Investigation, Validation, Writing - Original draft, Writing - review &; editing. L.F.M: Investigation, Validation, Writing - review &; editing. L.S.C: Validation, Writing - review &; editing. T.L.C.T.B: Validation, Writing - review &; editing. M.A.R: Supervision, Resources, Writing - review &; editing. T.F.C: Conceptualization, Methodology, Supervision, Resources, Project administration, Funding acquisition, Writing - review &; editing.

Corresponding authors

Correspondence to Mauricio Ariel Rostagno or Tânia Forster Carneiro.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez Moreno, J.A., de Freitas Marinho, L., Sanches Contieri, L. et al. Obtaining Extracts and Hydrolysates from Cambuci Peel Through Subcritical Water: An In-line Detection Approach. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03410-3

Keywords

Navigation