Skip to main content
Log in

Relationship between dicotyledone-amaranth, quinoa, fagopyrum, soybean and monocots- sorghum and rice based on protein analyses and their use as substitution of each other

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Comparative protein studies of cereals and pseudocereals are important, especially in cases of cereal protein allergy when pseudocereal substitution is unavoidable. Therefore, ten species and cultivars belonging to different Angiosperms families (Oryza sativa normal Poaceae, bran Poaceae and Jasmin Hom Dokmali Poaceae, Sorghum technicum Battand et Traubt Poaceae, Glycine max L. Merr. Fabaceae, Fagopyrum esculentum Mnch. Polygonaceae, Chenopodium quinoa Wild Chenopodiaceae, Amaranthus hybridum v.1004 Amaranthaceae, cruentus v. R104 Amaranthaceae and hypochondriacus v.1023 Amaranthaceae) were examined by sodium dodecyl sulphate (SDS-PAGE) seed protein markers, fluorescence, circular dichroism (CD) spectra and Fourier transform infrared (FT-IR) measurements. A high degree of polymorphism of all species and cultivars was found. Amaranth species have very similar seed protein electrophoretic profiles. According to UPGMA algorithm the examined species and varieties could be clustered into two similarity groups. Soybean, quinoa, buckwheat and Amaranth (as a genus) can be considered as phylogenic distant taxa. The fluorescence properties of amaranth, soybean, quinoa, rice and buckwheat soluble protein fractions were measured by fluorescence of tryptophan at 295 nm, light intensity, peak response and shift in the maximum of emission. Relative structural stabilities of native proteins were estimated by CD and FTIR. Similarities were found between these plants, which could make them a substitution of each other as well as for cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watanabe M (1990) Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J Agric Food Chem 46:839–845

    Article  Google Scholar 

  2. Asamarai AM, Addis PB, Epley RJ, Krick TP (1996) Wild rice mull antioxidants. J Agric Food Chem 44:126–130

    Article  CAS  Google Scholar 

  3. Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterization of pseudocereals and cereals proteins by protein and amino acid analyses. J Sci Food Agric 82:886–891

    Article  CAS  Google Scholar 

  4. Nakamura R (1987) Allergens in cereals. Chem Biol 25:739–741

    CAS  Google Scholar 

  5. Tsuji H, Kimoto M, Natori Y (2001) Allergens in major crops. Nutr Res 21:925–934

    Article  CAS  Google Scholar 

  6. Mills ENC, Jenkins JA, Alcocer MJC, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Critic Rev Food Sci Nutr 44:379–407

    Article  CAS  Google Scholar 

  7. Berti C, Riso P, Monti LD, Porrini M (2004) In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur J Nutr 43:198–204

    Article  CAS  PubMed  Google Scholar 

  8. Marcone MF, Yada RY (1992) Study of the charge profile and covalent subunit association of the oligomeric seed globulin from amaranthus hypochondriacus. J Agric Food Chem 40:385–389

    Article  CAS  Google Scholar 

  9. Segura-Nieto M, Barba de la Rosa AP, Paredes-Lopez O (1994) Biochemistry of amaranth proteins. In: Paredes-Lopez O (ed) Amaranth biology, chemistry and technology. CRC Press Inc., Boca Raton, FL, pp 76–95

    Google Scholar 

  10. Gorinstein S, Zemser M, Fliess A, Shnitman I, Paredes-Lopez O, Yamamoto K, Kobayashi S, Taniguchi H (1998) Computational analyses of the amino acid residue sequences of amaranth and some other proteins. Biosci Biotech Biochem 62:1845–1851

    Article  CAS  Google Scholar 

  11. Savitch IM (1980) Sostav prolaminov risa. Fizjolog Bioch Kult Rast 12:404–408

    Google Scholar 

  12. Ivanova DI (1986) Identifikacija genomov, subgenomov i podvidov risa po belkam zernovki. Selkhoz Biol 12:3–12

    Google Scholar 

  13. Edwards JD, Lee VM, McCouch SR (2004) Sources and predictors of resolvable indel polymorphism assessed using rice as a model. Mol Genet Genom 271:298–307

    Article  CAS  Google Scholar 

  14. Drzewiecki J, Delgado-Licon E, Haruenkit R, Pawelzik E, Martín-Belloso O, Park YS, Jung ST, Trakhtenberg S, Gorinstein S (2003) Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. J Agric Food Chem 51:7798–7804

    Article  CAS  PubMed  Google Scholar 

  15. Nkonge C, Balance GM (1982) A sensitive colorimetric procedure for nitrogen determination micro-Kjeldahl digests. J Agric Food Chem 30:416–420

    Article  CAS  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  17. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    CAS  PubMed  Google Scholar 

  18. Silva EP, Russo SAM (2000) Techniques and statistical data analysis in molecular popular genetics. Hydrobiol 420:119–135

    Article  CAS  Google Scholar 

  19. Arntfield SD, Ismond MAH, Murray ED (1987) Use of intrinsic fluorescence to follow the denaturation of vicilin, a storage protein from Vicia faba. Int. J Pept Protein Res 29:9–20

    CAS  Google Scholar 

  20. Salnikow J, Zemser M, Gorinstein S, Scheler C, Paredes-Lόpez O (1998) Structure-function relationships of unfolded and folded amaranth proteins as potential matrix for drug release and food ingredients. J Prot Chem 17:543–545

    CAS  Google Scholar 

  21. Gorinstein S, Delgado-Licon E, Pawelzik E, Permady HH, Weisz M, Trakhtenberg S (2001) Characterizition of soluble amaranth and soybean protein proteins based on fluorescence, hydrophobicity, electrophoresis, amino acid analysis, circular dichronism and differential scanning calorimetry measurements. J Agric Food Chem 49:5595–5601

    Article  CAS  PubMed  Google Scholar 

  22. Moharram MA, Abdelnour KN, Abdelraof G (1994) Infrared-spectra and dielectric-properties of thermally treated soybean proteins. Polym Degr Stab 45:429–434

    Article  CAS  Google Scholar 

  23. Gorinstein S, Zemser M, Friedman M, Rodrigues WA, Martins PS, Vello NA, Tosello GA, Paredes-Lόpez O (1996) Physicochemical characterization of the structural stability of some plant globulins. Food Chem 56:131–138

    Article  CAS  Google Scholar 

  24. Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochem 20:33–37

    Article  CAS  Google Scholar 

  25. Ng PKW, Bushuk W (1987) Glutenin of Marquis wheat as a reference for estimating molecular weights of glutenin subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cer Chem 64:324–327

    CAS  Google Scholar 

  26. Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  27. Sharma TR, Jana S (2002) Random amplified polymorphic DNA (RAPD) variation in Fagopyrum tataricum Gaertn. accessions from China and the Himalayan region. Euphytica 127:327–333

    Article  CAS  Google Scholar 

  28. Tachtadzjan A (1987) Sistema Magnoliophytov. Nauka, Leningrad, pp 48–75

    Google Scholar 

  29. Konarev AV, Semikchov VF, Primak SP, Arefyeva LP (1984) O sostave spirtorastvorimoj frakcii belkov semjan zlakov. Selkhoz Biol 6:13–17

    Google Scholar 

  30. Barker NP, Clark LG, Davis JI, Duvall MR, Guala GF, Hsiao C, Kellogg EA, Linder HP, Mason-Gamer RJ, Mathews SY, Simmons MP, Soreng RJ, Spangler RE (2001) Phylogeny and subfamilal classification of the grasses (Poaceae) [Review]. Ann Mo Bot Gard 88:373–457

    Google Scholar 

  31. Stefunova V, Bezo M (2003) Genetic diversity analysis of amaranth (Amaranthus cruentus) germplasm collection by RAPD. Biologia 58:53–57 Suppl

    CAS  Google Scholar 

  32. Paterson AH, Bowers JE, Chapman BA, Peterson DG, Rong JK, Wicker TM (2004) Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. Curr Opin Biotech 15:120–125

    Article  CAS  PubMed  Google Scholar 

  33. Spada A, Mantegazza R, Biloni M, Caporali E, Sala F (2004) Italian rice varieties: historical data, molecular markers and pedigrees to reveal their genetic relationships. Plant Breed 123:105–111

    Article  CAS  Google Scholar 

  34. Doltsinis S, Andlauer W (2004) Key components of nutrition - Alternatives to animal proteins. Chemie in Unserer Zeit 38:182–189

    Article  CAS  Google Scholar 

  35. Gupta HO (2004) Improving the nutritional quality of maize after supplementation with processed soybean. J Food Sci Technol-Mysore 41:167–170

    CAS  Google Scholar 

  36. Molina-Poveda C, Morales ME (2004) Use of a mixture of barley-based fermented grains and wheat gluten as an alternative protein source in practical diets for Litopenaeus vannamei. Aquaculture Res 35:1158–1165

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Dr. Ivan Goshev, Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria, for his technical assistance in drawing Figure 5

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shela Gorinstein.

Additional information

Author, S. Gorinstein is affiliated with the David R. Bloom Center for Pharmacy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorinstein, S., Drzewiecki, J., Delgado-Licon, E. et al. Relationship between dicotyledone-amaranth, quinoa, fagopyrum, soybean and monocots- sorghum and rice based on protein analyses and their use as substitution of each other. Eur Food Res Technol 221, 69–77 (2005). https://doi.org/10.1007/s00217-005-1208-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-1208-2

Keywords

Navigation