Skip to main content

Advertisement

Log in

The 35S CaMV plant virus promoter is active in human enterocyte-like cells

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The 35S cauliflower mosaic virus (CaMV) promoter is commonly used to drive transgene expression in the genetically engineered (GE) crop plants that have been commercialized so far. Whether, and how far, the 35S promoter might be active in mammalian cells has been scientifically unsettled and controversial. Very recently it was established that the 35S promoter is transcriptionally active following transient reporter gene transfections in continuous cell lines of human [J Biotechnol 103:197–202, 2003] and hamster ovary [Environ Biosafety Res 3:41–47, 2004] fibroblasts. The initial exposure of a human organism to DNA from GE food takes place in the gastrointestinal tract (GIT). Hence, we have now investigated the promoter capacity of 35S in human enterocyte-like cells. We constructed expression vectors with 35S promoter inserted in front of two reporter genes encoding firefly luciferase and green fluorescent protein (GFP), respectively, and performed transient transfection experiments in the human enterocyte-like cell line Caco-2. It was demonstrated that the 35S CaMV promoter was able to drive the expression of both reporter genes to significant levels, although the protein expression levels might seem modest compared to those obtained with the strong promoters derived from human cytomegalo virus (hCMV) and simian virus 40 (SV40). Furthermore, computer-based searches of the 35S CaMV DNA sequence for putative mammalian transcription factor binding motifs gave a high number of hits. Some of the identified motifs indicate that transcriptional activation by the 35S CaMV promoter may be stronger in other human and animal cell types than in those investigated so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pooggin MM, Futterer J, Skryabin KG, Hohn T (2001) Proc Natl Acad Sci USA 98:886–891

    Article  PubMed  CAS  Google Scholar 

  2. Hull R, Covey SN (1983) Sci Prog 68:403–422

    CAS  Google Scholar 

  3. Odell JT, Nagy F, Chua NH (1985) Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  4. Fromm M, Taylor LP, Walbot V (1985) Proc Natl Acad Sci USA 82:5824–5828

    Article  PubMed  CAS  Google Scholar 

  5. Gasson M, Burke D (2001) Nat Rev Genet 2:217–222

    Article  PubMed  CAS  Google Scholar 

  6. Assaad FF, Signer ER (1990) Mol Gen Genet 223:517–520

    Article  PubMed  CAS  Google Scholar 

  7. Hirt H, Kogl M, Murbacher T, Heberlebors E (1990) Curr Genet 17:473–479

    Article  PubMed  CAS  Google Scholar 

  8. Ruth J, Hirt H, Schweyen RJ (1992) Mol Gen Genet 235:365–372

    Article  PubMed  CAS  Google Scholar 

  9. Gmunder H, Kohli J (1989) Mol Gen Genet 220:95–101

    PubMed  CAS  Google Scholar 

  10. Pobjecky N, Rosenberg GH, nter-Gottlieb G, Kaufer NF (1990) Mol Gen Genet 220:314–316

    Article  PubMed  CAS  Google Scholar 

  11. Ryabova LA, Hohn T (2000) Genes Dev 14:817–829

    PubMed  CAS  Google Scholar 

  12. Ballas N, Broido S, Soreq H, Loyter A (1989) Nucleic Acids Res 17:7891–7903

    Article  PubMed  CAS  Google Scholar 

  13. Vlasak J, Smahel M, Pavlik A, Pavingerova D, Briza J (2003) J Biotechnol 103:197–202

    Article  PubMed  CAS  Google Scholar 

  14. Tepfer M, Gaubert S, Leroux-Coyau M, Prince S, Houdebine LM (2004) Environ Biosafety Res 3:91–97

    Google Scholar 

  15. Fleeton MN, Contractor N, Leon F, Wetzel JD, Dermody TS, Kelsall BL (2004) J Exp Med 200:235–245

    Article  PubMed  CAS  Google Scholar 

  16. Schubbert R, Lettmann C, Doerfler W (1994) Mol Gen Genet 242:495–504

    Article  PubMed  CAS  Google Scholar 

  17. Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Proc Natl Acad Sci USA 94:961–966

    Article  PubMed  CAS  Google Scholar 

  18. Schubbert R, Hohlweg U, Renz D, Doerfler W (1998) Mol Gen Genet 259:569–576

    Article  PubMed  CAS  Google Scholar 

  19. Hohlweg U, Doerfler W (2001) Mol Gen Genomics 265:225–233

    Article  CAS  Google Scholar 

  20. Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwagele F, Jahreis G, Flachowsky G (2001) Eur Food Res Technol 212:129–134

    Article  CAS  Google Scholar 

  21. Palka-Santini M, Schwarz-Herzke B, Hosel M, Renz D, Auerochs S, Brondke H, Doerfler W (2003) Mol Genet Genomics 270:201–215

    Article  PubMed  CAS  Google Scholar 

  22. Forsman A, Ushameckis D, Bindra A, Yun Z, Blomberg J (2003) Mol Genet Genomics 270:362–368

    Article  PubMed  CAS  Google Scholar 

  23. Gebert A, Steinmetz I, Fassbender S, Wendlandt KH (2004) Am J Pathol 164:65–72

    PubMed  Google Scholar 

  24. Jumarie C, Malo C (1991) J Cell Physiol 149:24–33

    Article  PubMed  CAS  Google Scholar 

  25. Fogh J, Fogh JM, Orfeo T (1977) J Natl Cancer Inst 59:221–226

    PubMed  CAS  Google Scholar 

  26. Fogh J, Wright WC, Loveless JD (1977) J Natl Cancer Inst 58:209–214

    PubMed  CAS  Google Scholar 

  27. Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Nucleic Acids Res 14:5857–5868

    Article  PubMed  CAS  Google Scholar 

  28. Brussel A, Sonigo P (2003) J Virol 77:10119–10124

    Article  PubMed  CAS  Google Scholar 

  29. Murakami Y, Minami M, Daimon Y, Okanoue T (2004) J Med Virol 72:203–214

    Article  PubMed  Google Scholar 

  30. Jurka J, Smith T (1988) Proc Natl Acad Sci USA 85:4775–4778

    Article  PubMed  CAS  Google Scholar 

  31. Sonza S, Maerz A, Deacon N, Meanger J, Mills J, Crowe S (1996) J Virol 70:3863–3869

    PubMed  CAS  Google Scholar 

  32. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.R.M. and T.T acknowledge financial support from The Research Council of Norway, project no. 129591/310, and also from the Norwegian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terje Traavik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myhre, M.R., Fenton, K.A., Eggert, J. et al. The 35S CaMV plant virus promoter is active in human enterocyte-like cells. Eur Food Res Technol 222, 185–193 (2006). https://doi.org/10.1007/s00217-005-0154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0154-3

Keywords

Navigation