Skip to main content
Log in

A lateral flow assay for miRNA-21 based on CRISPR/Cas13a and MnO2 nanosheets-mediated recognition and signal amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The point-of-care testing (POCT) of miRNA has significant application in medical diagnosis, yet presents challenges due to their characteristics of high homology, low abundance, and short length, which hinders the achievement of quick detection with high specificity and sensitivity. In this study, a lateral flow assay based on the CRISPR/Cas13a system and MnO2 nanozyme was developed for highly sensitive detection of microRNA-21 (miR-21). The CRISPR/Cas13a cleavage system exhibits the ability to recognize the specific oligonucleotide sequence, where two-base mismatches significantly impact the cleavage activity of the Cas13a. Upon binding of the target to crRNA, the cleavage activity of Cas13a is activated, resulting in the unlocking of the sequence and initiating strand displacement, thereby enabling signal amplification to produce a new sequence P1. When applying the reaction solution to the lateral flow test strip, P1 mediates the capture of MnO2 nanosheets (MnO2 NSs) on the T zone, which catalyzes the oxidation of the pre-immobilized colorless substrate 3,3′,5,5′-tetramethylbenzidine (TMB) on the T zone and generates the blue-green product (ox-TMB). The change in gray value is directly proportional to the concentration of miR-21, allowing for qualitative detection through visual inspection and quantitative measurement using ImageJ software. This method achieves the detection of miR-21 within a rapid 10-min timeframe, and the limit of detection (LOD) is 0.33 pM. With the advantages of high specificity, simplicity, and sensitivity, the lateral flow test strip and the design strategy hold great potential for the early diagnosis of related diseases.

Graphical abstract

This work integrates the chromogenic reaction of TMB catalyzed by MnO2 NSs, the high specificity and signal amplification capability of the CRISPR/Cas13a cleavage system, and the simplicity and visual clarity of the lateral flow test strip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 2021;70:784–95. https://doi.org/10.1136/gutjnl-2020-322526.

    Article  CAS  PubMed  Google Scholar 

  2. Jenike AE, Halushka MK. Mir-21: A non-specific biomarker of all maladies. Biomark Res. 2021;9:18. https://doi.org/10.1186/s40364-021-00272-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yin F, Cai R, Gui S, Zhang Y, Wang X, Zhou N. A portable and quantitative detection of microRNA-21 based on cascade enzymatic reactions with dual signal outputs. Talanta. 2021;235: 122802. https://doi.org/10.1016/j.talanta.2021.122802.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Hu Y, Xie R, Zeng Q, Hong Y, Chen X, et al. Ultrasensitive label-free miRNA-21 detection based on MXene-enhanced plasmonic lateral displacement measurement. Nanophotonics-berlin. 2023;12:4055–62. https://doi.org/10.1515/nanoph-2023-0432.

    Article  CAS  Google Scholar 

  5. Seo SB, Hwang J-S, Kim E, Kim K, Roh S, Lee G, et al. Isothermal amplification-mediated lateral flow biosensors for in vitro diagnosis of gastric cancer-related microRNAs. Talanta. 2022;246: 123502. https://doi.org/10.1016/j.talanta.2022.123502.

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Zhang Y, Hao W, Lu H, Dong H, Zhang X. Sensitive microRNA detection based on bimetallic label photothermal lateral flow locked nucleic acid biosensor with smartphone readout. Sensor Actuat B-chem. 2023;375: 132945. https://doi.org/10.1016/j.snb.2022.132945.

    Article  CAS  Google Scholar 

  7. Kor K, Turner AP, Zarei K, Atabati M, Beni V, Mak WC. Structurally responsive oligonucleotide-based single-probe lateral-flow test for detection of miRNA-21 mimics. Anal Bioanal Chem. 2016;408:1475–85. https://doi.org/10.1007/s00216-015-9250-9.

    Article  CAS  PubMed  Google Scholar 

  8. Gao X, Xu H, Baloda M, Gurung AS, Xu L-P, Wang T, et al. Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron. 2014;54:578–84. https://doi.org/10.1016/j.bios.2013.10.055.

    Article  CAS  PubMed  Google Scholar 

  9. Jin X, Chen L, Zhang Y, Wang X, Zhou N. A lateral flow strip for on-site detection of tobramycin based on dual-functional platinum-decorated gold nanoparticles. Analyst. 2021;146:3608–16. https://doi.org/10.1039/d1an00403d.

    Article  CAS  PubMed  Google Scholar 

  10. Gao X, Xu L-P, Wu T, Wen Y, Ma X, Zhang X. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta. 2016;146:648–54. https://doi.org/10.1016/j.talanta.2015.06.060.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Tang L, Yu Q, Qiu W, Li K, Cheng L, et al. Gold-platinum nanoflowers as colored and catalytic labels for ultrasensitive lateral flow microRNA-21 assay. Sensor Actuat B-chem. 2021;344: 130325. https://doi.org/10.1016/j.snb.2021.130325.

    Article  CAS  Google Scholar 

  12. Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat Methods. 2021;18:499–506. https://doi.org/10.1038/s41592-021-01124-4.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou H, Bu S, Xu Y, Xue L, Li Z, Hao Z, et al. CRISPR/Cas13a combined with hybridization chain reaction for visual detection of influenza a (H1N1) virus. Anal Bioanal Chem. 2022;414:8437–45. https://doi.org/10.1007/s00216-022-04380-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui Y, Fan S, Yuan Z, Song M, Hu J, Qian D, et al. Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta. 2021;224: 121878. https://doi.org/10.1016/j.talanta.2020.121878.

    Article  CAS  PubMed  Google Scholar 

  15. Liu FX, Cui JQ, Park H, Chan KW, Leung T, Tang BZ, et al. Isothermal background-free nucleic acid quantification by a one-pot Cas13a assay using droplet microfluidics. Anal Chem. 2022;94:5883–92. https://doi.org/10.1021/acs.analchem.2c00067.

    Article  CAS  PubMed  Google Scholar 

  16. Shan Y, Zhou X, Huang R, Xing D. High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Anal Chem. 2019;91:5278–85. https://doi.org/10.1021/acs.analchem.9b00073.

    Article  CAS  PubMed  Google Scholar 

  17. Wessels H-H, Méndez-Mancilla A, Guo X, Legut M, Daniloski Z, Sanjana NE. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol. 2020;38:722–7. https://doi.org/10.1038/s41587-020-0456-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–44. https://doi.org/10.1126/science.aaq0179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou T, Huang M, Lin J, Huang R, Xing D. High-fidelity CRISPR/Cas13a a trans-cleavage-triggered rolling circle amplified dnazyme for visual profiling of microRNA. Anal Chem. 2021;93:2038–44. https://doi.org/10.1021/acs.analchem.0c03708.

    Article  CAS  PubMed  Google Scholar 

  20. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–4. https://doi.org/10.1038/nature24049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou B, Ye Q, Li F, Xiang X, Shang Y, Wang C, et al. CRISPR/Cas12a based fluorescence-enhanced lateral flow biosensor for detection of staphylococcus aureus. Sensor Actuat B-chem. 2022;351: 130906. https://doi.org/10.1016/j.snb.2021.130906.

    Article  CAS  Google Scholar 

  22. Arizti-Sanz J, Bradley AD, Zhang YB, Boehm CK, Freije CA, Grunberg ME, et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat Biomed Eng. 2022;6:932–43. https://doi.org/10.1038/s41551-022-00889-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron. 2017;90:69–74. https://doi.org/10.1016/j.bios.2016.11.046.

    Article  CAS  PubMed  Google Scholar 

  24. Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6. https://doi.org/10.1016/j.aca.2012.11.056.

    Article  CAS  PubMed  Google Scholar 

  25. Hizir MS, Top M, Balcioglu M, Rana M, Robertson NM, Shen F, et al. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal Chem. 2015;88:600–5. https://doi.org/10.1021/acs.analchem.5b03926.

    Article  CAS  PubMed  Google Scholar 

  26. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47:6695. https://doi.org/10.1039/c1cc11943e.

    Article  CAS  Google Scholar 

  27. Liu B, Liu J. Surface modification of nanozymes Nano Res. 2017;10:1125–48. https://doi.org/10.1007/s12274-017-1426-5.

    Article  CAS  Google Scholar 

  28. Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, et al. When nanozymes meet single-atom catalysis. Angew Chem Int Edit. 2019;59:2565–76. https://doi.org/10.1002/anie.201905645.

    Article  CAS  Google Scholar 

  29. Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4. https://doi.org/10.1021/ac702203f.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang T, Song Y, Wei T, Li H, Du D, Zhu M-J, et al. Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron. 2016;77:687–94. https://doi.org/10.1016/j.bios.2015.10.017.

    Article  CAS  PubMed  Google Scholar 

  31. Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22:2206–10. https://doi.org/10.1002/adma.200903783.

    Article  CAS  PubMed  Google Scholar 

  32. Yan X, Song Y, Wu X, Zhu C, Su X, Du D, et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale. 2017;9:2317–23. https://doi.org/10.1039/c6nr08473g.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Xu K, Sun H, Yin S. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small. 2015;11:2182–91. https://doi.org/10.1002/smll.201402222.

    Article  CAS  PubMed  Google Scholar 

  34. Cai X, Liang M, Ma F, Zhang Z, Tang X, Jiang J, et al. Nanozyme-strip based on MnO2 nanosheets as a catalytic label for multi-scale detection of aflatoxin B1 with an ultrabroad working range. Food Chem. 2022;377: 131965. https://doi.org/10.1016/j.foodchem.2021.131965.

    Article  CAS  PubMed  Google Scholar 

  35. Sheng E, Lu Y, Tan Y, Xiao Y, Li Z, Dai Z. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples. Food Chem. 2020;331: 127090. https://doi.org/10.1016/j.foodchem.2020.127090.

    Article  CAS  PubMed  Google Scholar 

  36. Shi M, Wang S, Zheng S, Hou P, Dong L, He M, et al. Activatable MRI-monitoring gene delivery for the theranostic of renal carcinoma. Colloid Surface B. 2020;185: 110625. https://doi.org/10.1016/j.colsurfb.2019.110625.

    Article  CAS  Google Scholar 

  37. Yao M, Lv X, Deng Y, Rasheed M. Specific and simultaneous detection of microRNA 21 and let-7a by rolling circle amplification combined with lateral flow strip. Anal Chim Acta. 2019;1055:115–25. https://doi.org/10.1016/j.aca.2018.12.040.

    Article  CAS  PubMed  Google Scholar 

  38. Cimmino W, Migliorelli D, Singh S, Miglione A, Generelli S, Cinti S. Design of a printed electrochemical strip towards miRNA-21 detection in urine samples: optimization of the experimental procedures for real sample application. Anal Bioanal Chem. 2023;415:4511–20. https://doi.org/10.1007/s00216-023-04659-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deng K, Zhang Y, Tong X. Sensitive electrochemical detection of microRNA-21 based on propylamine-functionalized mesoporous silica with glucometer readout. Anal Bioanal Chem. 2018;410:1863–71. https://doi.org/10.1007/s00216-018-0859-3.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng W, Yao L, Teng J, Yan C, Qin P, Liu G, et al. Lateral flow test for visual detection of multiple microRNAs. Sensor Actuat B-chem. 2018;264:320–6. https://doi.org/10.1016/j.snb.2018.02.159.

    Article  CAS  Google Scholar 

  41. Wei H, Peng Y, Bai Z, Rong Z, Wang S. Duplex-specific nuclease signal amplification-based fluorescent lateral flow assay for the point-of-care detection of microRNAs. Analyst. 2021;146:558–64. https://doi.org/10.1039/d0an01673j.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (42177212, 62301234, 32371430).

Author information

Authors and Affiliations

Authors

Contributions

Mingyuan Wang: ideas, investigation, data curation, writing — original draft. Shixin Cai: investigation, data curation. Yunqing Wu: formal analysis, validation. Qi Li: supervision. Xiaoli Wang: management, funding acquisition. Yuting Zhang: supervision, funding acquisition. Nandi Zhou: writing — review and editing, supervision, funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qi Li or Nandi Zhou.

Ethics declarations

Ethics approval

The experiments were approved by the Ethics Committee of the Wuxi No.2 People’s Hospital in Jiangsu Province, China.

Source of biological material

All of the clinical serum samples were collected from the Wuxi No.2 People’s Hospital in Jiangsu Province, China.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 19665 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cai, S., Wu, Y. et al. A lateral flow assay for miRNA-21 based on CRISPR/Cas13a and MnO2 nanosheets-mediated recognition and signal amplification. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05290-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05290-0

Keywords

Navigation