Skip to main content

Recent Advances in Ultrasensitive miRNA Biomarkers Detection

  • Chapter
  • First Online:
Advanced Sensors for Biomedical Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 38))

Abstract

Recently, microRNAs gain a great interest in the bio-molecular field due to their fundamental role in clinical diagnostics. In this chapter, we generally discussed the biogenesis of microRNAs and the progress made for their detection. Researchers have widely tried to investigate their effort to build a sensitive, selective, and accurate platform for microRNA detection. To date, multiple techniques have been developed, ranging from the old conventional method (northern blot, RT-PCR, microarrays) to the newly established ones (biosensors, nanopores). However, given the various challenges related to miRNA detection, such as low abundance, small size, and high level of sequence similarity, different enzymatic and non-enzymatic amplification approaches were successfully exploited to improve such devices’ sensitivity. Among these strategies, HCR, RCA, nanomaterials, and the use of enzyme-based target recycling like DSN enzyme. On the other hand, the combination of different methods has emerged as an ideal option for further enhancement of the sensitivity. In the end, knowing that the expression of a single miRNA is not enough to identify one specific disease, it is usually necessary to implant a simultaneous and multiplexed technique for more sophisticated and efficient diagnostic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Angelucci, F., Cechova, K. Valis, M. Kuca, K. Zhang, B., & Hort, J. (2019). MicroRNAs in Alzheimer’s disease: Diagnostic markers or therapeutic agents? Frontiers in Pharmacology, 10(JUN), 1–9.

    Google Scholar 

  • Asangani, I. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.

    Article  CAS  Google Scholar 

  • Bahri, M., Baraket, A., Zine, N., Ben Ali, M., Bausells, J., & Errachid, A. (2019). Capacitance electrochemical biosensor based on silicon nitride transducer for TNF-\(\alpha \) cytokine detection in artificial human saliva: Heart failure (HF). Talanta.

    Google Scholar 

  • Banzhaf-Strathmann, J., et al. (2014). Micro RNA -125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. The EMBO Journal, 33(15), 1667–1680.

    Article  CAS  Google Scholar 

  • Bellassai, N., D’Agata, R., Jungbluth, V., & Spoto, G. (2019). Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Frontiers in Chemistry, 7(August), 1–16.

    Google Scholar 

  • Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W., & Pasquinelli, A. E. (2016). Pairing beyond the seed supports MicroRNA targeting specificity. Molecular Cell, 64(2), 320–333.

    Article  CAS  Google Scholar 

  • Cai, B., Huang, L., Zhang, H., Sun, Z., Zhang, Z., & Zhang, G. J. (2015). Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosensors and Bioelectronics, 74, 329–334.

    Google Scholar 

  • Calin, G. A., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.

    Article  CAS  Google Scholar 

  • Castañeda, A. D., Brenes, N. J., Kondajji, A. and Crooks, R. M. (2017). Detection of microRNA by electrocatalytic amplification: A general approach for single-particle biosensing. Journal of the American Chemical Society, 139(22), 7657–7664.

    Google Scholar 

  • Castoldi, M., et al. (2006). A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). Rna, 12(5), 913–920.

    Article  CAS  Google Scholar 

  • Chen, S. N., et al. (2019). MicroRNA in ovarian cancer: Biology, pathogenesis, and therapeutic opportunities. International Journal of Environmental Research and Public Health, 16(9), 1–14.

    Article  Google Scholar 

  • Cissell, K. A., Shrestha, S., & Deo, S. K. (2007). MicroRNA detection: Challenges for the analytical chemist. Analytical Chemistry, 79(13), 4754–4761.

    Article  CAS  Google Scholar 

  • Congur, G., Eksin, E. & Erdem, A. (2015). Impedimetric detection of microRNA at graphene oxide modified sensors. Electrochimica Acta, 172, 20–27.

    Google Scholar 

  • Dave, V. P., et al. (2019). MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Laboratory Investigation, 99(4), 452–469.

    Article  CAS  Google Scholar 

  • Erdem, A., Eksin, E., & Congur, G. (2015). Indicator-free electrochemical biosensor for microRNA detection based on carbon nanofibers modified screen printed electrodes. Journal of Electroanalytical Chemistry, 755, 167–173.

    Google Scholar 

  • Erdem, A., Eksin, E., Isin, D., & Polat, D. (2017). Graphene oxide modified chemically activated graphite electrodes for detection of microRNA. Electroanalysis, 29(5), 1350–1358.

    Google Scholar 

  • Feinbaum, R., Ambros, V., & Lee, R. (2004). The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14. Cell, 75(5), pp. 843–854.

    Google Scholar 

  • Feng, J., Xing, W., & Xie, L. (2016). Regulatory roles of microRNAs in diabetes. International Journal of Molecular Sciences, 17(10), 1–12.

    Article  CAS  Google Scholar 

  • Gao, Z., Deng, H., Shen, W., & Ren, Y. (2013). A label-free biosensor for electrochemical detection of femtomolar microRNAs. Analytical Chemistry, 85(3), 1624–1630.

    Google Scholar 

  • Gao, A., Lu, N., Dai, P., Li, T., & Wang, Y. (2013). Label-free and ultrasensitive detection of microrna biomarkers in lung cancer cells based on silicon nanowire FET biosensors. In 2013 Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (pp. 2439–2442). TRANSDUCERS and EUROSENSORS.

    Google Scholar 

  • Gao, J., et al. (2020). Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Applied Electronic Materials, 2(4), 1090–1098.

    Article  CAS  Google Scholar 

  • Goh, S. Y., Chao, Y. X., Dheen, S. T., Tan, E. K., & Tay, S. S. W. (2019). Role of microRNAs in parkinson’s disease. International Journal of Molecular Sciences, 20(22), 1–23.

    Article  CAS  Google Scholar 

  • Goodman, R. P., et al. (2005). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. American Association for the Advancement of Science, 310(5754), 1661–1665.

    Article  CAS  Google Scholar 

  • Guo, R., et al. (2018). Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors. ACS Applied Materials and Interfaces, 10(30), 25770–25778.

    Article  CAS  Google Scholar 

  • He, K., Liao, R., Cai, C., Liang, C., Liu, C., & Chen, X. (2016). Y-shaped probe for convenient and label-free detection of microRNA-21 in vitro. Analytical Biochemistry, 499, 8–14.

    Article  CAS  Google Scholar 

  • Huang, J., et al. (2019). Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst, 144(16), 4917–4924.

    Article  CAS  Google Scholar 

  • Hwang, M. T., et al. (2020). Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 11(1).

    Google Scholar 

  • Isin, D., Eksin, E., & Erdem, A. (2017). Graphene oxide modified single-use electrodes and their application for voltammetric miRNA analysis. Materials Science and Engineering C, 75, 1242–1249.

    Google Scholar 

  • Ivica, J., Williamson, P. T. F., & de Planque, M. R. R. (2017). Salt gradient modulation of microRNA translocation through a biological nanopore. Analytical Chemistry, 89(17), 8822–8829.

    Google Scholar 

  • Jie, G., Zhao, Y., Wang, X., & Ding, C. (2017). Multiplexed fluorescence detection of microRNAs based on novel distinguishable quantum dot signal probes by cycle amplification strategy. Sensors and Actuators, B: Chemical, 252, 1026–1034.

    Article  CAS  Google Scholar 

  • Joshi, G. K., Deitz-Mcelyea, S., Johnson, M., Mali, S., Korc, M., & Sardar, R. (2014). Highly specific plasmonic biosensors for ultrasensitive MicroRNA detection in plasma from pancreatic cancer patients. Nano Letters, 14(12), 6955–6963.

    Article  CAS  Google Scholar 

  • Kamal Masud, M., et al. (2017). Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA. Chemical Communications, 53(8), 8231–8234.

    Google Scholar 

  • Kaplan, M., Kilic, T., Guler, G., Mandli, J., Amine, A., & Ozsoz, M. (2017). A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosensors and Bioelectronics, 92, 770–778.

    Google Scholar 

  • Kilic, T., Erdem, A., Erac, Y., Seydibeyoglu, M. O., Okur, S., & Ozsoz, M. (2015). Electrochemical detection of a cancer biomarker mir-21 in cell lysates using graphene modified sensors. Electroanalysis, 27(2), 317–326.

    Google Scholar 

  • Kilic, T., et al. (2012). Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosensors and Bioelectronics, 38(1), 195–201.

    Google Scholar 

  • Kilic, T., Nur Topkaya, S., & Ozsoz, M. (2013). A new insight into electrochemical microRNA detection: A molecular caliper, p19 protein. Biosensors and Bioelectronics, 48, 165–171.

    Google Scholar 

  • Kim, S. W., et al. (2010). A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Research, 38(7), 1–7.

    Article  CAS  Google Scholar 

  • Labib, M., Khan, N., Ghobadloo, S. M., Cheng, J., Pezacki, J. P., & Berezovski, M. V. (2013). Three-mode electrochemical sensing of ultralow MicroRNA levels. Journal of the American Chemical Society, 135(8), 3027–3038.

    Article  CAS  Google Scholar 

  • Lee, K., et al. (2018). Recent progress in solid-state nanopores. 1704680, 1–28.

    Google Scholar 

  • Lee, J. H., Kim, J. A., Jeong, S., & Rhee, W. J. (2016). Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons. Biosensors and Bioelectronics, 86, 202–210.

    Article  CAS  Google Scholar 

  • Leggio, L., et al. (2017). MicroRNAs in parkinson’s disease: From pathogenesis to novel diagnostic and therapeutic approaches. International Journal of Molecular Sciences, 18(12).

    Google Scholar 

  • Li, M., et al. (2019). Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification. Microchimica Acta, 186(8).

    Google Scholar 

  • Li, Y., Tian, R., Zheng, X., & Huang, R. (2016). Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles. Analytica Chimica Acta, 934, 59–65.

    Google Scholar 

  • Li, Q., Wang, Q., Yang, X., Wang, K., Zhang, H., and Nie, W. (2017). High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Talanta, 174(June), 521–526.

    Google Scholar 

  • Liu, L., et al. (2014). Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosensors and Bioelectronics, 53, 399–405.

    Google Scholar 

  • Lu, Z., et al. (2016). Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosensors and Bioelectronics, 86, 502–507.

    Google Scholar 

  • Madison, B. B., et al. (2015). Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genetics, 11(8), 1–21.

    Article  CAS  Google Scholar 

  • Majd, S. M., Salimi, A., & Ghasemi, F. (2018). An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosensors and Bioelectronics, 105, 6–13.

    Article  CAS  Google Scholar 

  • Miao, P., et al. (2016). Nuclease assisted target recycling and spherical nucleic acids gold nanoparticles recruitment for ultrasensitive detection of microRNA. Electrochimica Acta, 190, 396–401.

    Google Scholar 

  • Mittal, S., Thakur, S., Mantha, A. K., & Kaur, H. (2019). Bio-analytical applications of nicking endonucleases assisted signal-amplification strategies for detection of cancer biomarkers -DNA methyl transferase and microRNA. Biosensors and Bioelectronics, 124–125, 233–243.

    Article  CAS  Google Scholar 

  • Mousavi, M. Z., et al. (2015). Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst, 140(12), 4097–4104.

    Article  CAS  Google Scholar 

  • Nie, W., et al. (2017). High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide. Analytica Chimica Acta, 993, 55–62.

    Article  CAS  Google Scholar 

  • Ouyang, T., Liu, Z., Han, Z., & Ge, Q. (2019). MicroRNA detection specificity: Recent advances and future perspective. Analytical Chemistry, 91(5), 3179–3186.

    Article  CAS  Google Scholar 

  • Pang, Y., Wang, C., Wang, J., Sun, Z., Xiao, R., & Wang, S. (2016). Fe\(_3\)O\(_4\)@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosensors and Bioelectronics, 79, 574–580.

    Article  CAS  Google Scholar 

  • Peng, Y., & Gao, Z. (2011). Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Analytical Chemistry, 83(3), 820–827.

    Google Scholar 

  • Peng, Y., Yi, G., & Gao, Z. (2010). A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline. Chemical Communications, 46(48), 9131–9133.

    Google Scholar 

  • Plesivkova, D., Richards, R., & Harbison, S. (2018). A review of the potential of the MinION TM single-molecule sequencing system for forensic applications. (December), 1–12, 2019.

    Google Scholar 

  • Pritchard, C. C., Cheng, H. H., & Tewari, M. (2015). MicroRNA profiling: Approaches and considerations.13(5), 358–369.

    Google Scholar 

  • Qin, S., & Zhang, C. (2011). MicroRNAs in vascular disease. Journal of Cardiovascular Pharmacology, 57(1), 8–12.

    Article  CAS  Google Scholar 

  • Rafiee-Pour, H. A., Behpour, M., & Keshavarz, M. (2016). A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: Application to breast cancer biomarker miRNA-21. Biosensors and Bioelectronics, 77, 202–207.

    Google Scholar 

  • Ramkissoon, S. H., Mainwaring, L. A., Sloand, E. M., Young, N. S., & Kajigaya, S. (2006). Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Molecular and Cellular Probes, 20(1), 1–4.

    Article  CAS  Google Scholar 

  • Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor applications. In Electrochemical Biosensors (pp. 11–43). Amsterdam: Elsevier.

    Google Scholar 

  • Sapsford, K. E., Berti, L., & Medintz, I. L. (2006). Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angewandte Chemie - International Edition, 45(28), 4562–4589.

    Article  CAS  Google Scholar 

  • Sarkar, D., Liu, W., Xie, X., Anselmo, A. C., Mitragotri, S., & Banerjee, K. (2014). MOS\(_2\) field-effect transistor for next-generation label-free biosensors. ACS Nano, 8(4), 3992–4003.

    Google Scholar 

  • Schetter, A. J., Okayama, H., & Harris, C. C. (2012). The role of microRNAs in colorectal cancer. Cancer Journal, 18(3), 244–252.

    Article  CAS  Google Scholar 

  • Shen, W., Yeo, K. H., & Gao, Z. (2015). A simple and highly sensitive fluorescence assay for microRNAs. Analyst, 140(6), 1932–1938.

    Article  CAS  Google Scholar 

  • Shi, W., Friedman, A. K., & Baker, L. A. (2017). Nanopore Sensing.

    Google Scholar 

  • Shu Zhu, C., et al. (2019). Avenues toward microrna detection in vitro: A review of technical advances and challenges. Computational and Structural Biotechnology Journal, 17, 904–916.

    Article  CAS  Google Scholar 

  • Shuai, H. L., Huang, K. J., Chen, Y. X., Fang, L. X., & Jia, M. P. (2017). Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosensors and Bioelectronics, 89(Pt 2), 989–997.

    Google Scholar 

  • Shuai, H. L., Huang, K. J., Xing, L. L., & Chen, Y. X. (2016). Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. Biosensors and Bioelectronics, 86, 337–345.

    Google Scholar 

  • Silahtaroglu, A., Pfundheller, H., Koshkin, A., Tommerup, N., & Kauppinen, S. (2004). LNA-modified oligonucleotides are highly efficient as FISH probes. Cytogenetic and Genome Research, 107(1–2), 32–37.

    Article  CAS  Google Scholar 

  • Simões, F. R., & Xavier, M. G. (2017). Electrochemical sensors. In Nanoscience and its Applications, (pp. 155–178). Amsterdam: Elsevier Inc.

    Google Scholar 

  • Singh, R., & Mo, Y. (2013). Role of microRNAs in breast cancer. Cancer Biology & Therapy, 14(March), 201–212.

    Google Scholar 

  • Song, R., et al. (2020). Detection of microRNA based on three-dimensional graphene field-effect transistor biosensor. Nano, 15(3), 1–8.

    Article  CAS  Google Scholar 

  • Su, S., et al. (2016). On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of microRNA. Small, 12(28), 3794–3801.

    Google Scholar 

  • Sultan, M., & Kanavarioti, A. (2019). Nanopore device-based fingerprinting of RNA oligos and microRNAs enhanced with an Osmium tag. Scientific Reports (September), 1–18.

    Google Scholar 

  • Tan, L., Xu, L., Liu, J. W., Tang, L. J., Tang, H., & Yu, R. (2019). Duplex-specific nuclease-mediated target recycling amplification for fluorescence detection of microRNA. Analytical Methods, 11(2), 200–204.

    Article  CAS  Google Scholar 

  • Tian, K., He, Z., Wang, Y., Chen, S.-J., & Gu, L.-Q. (2013). Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano, 7(5), 3962–3969.

    Google Scholar 

  • Tlili, C., et al. (2003). Fibroblast cells: A sensing bioelement for glucose detection by imedance spectroscopy. Analytical Chemistry, 75(14), 3340–3344.

    Google Scholar 

  • Tlili, C., Korri-Youssoufi, H., Ponsonnet, L., Martelet, C., & Jaffrezic-Renault, N. J. (2005). Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta, 68(1), 131–137.

    Google Scholar 

  • Tran, H. V., Piro, B., Reisberg, S., Tran, L. D., Duc, H. T., & Pham M. C. (2013). Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosensors and Bioelectronics, 49, 64–169.

    Google Scholar 

  • Tribolet, L., et al (2020). MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Frontiers in Microbiology, 11(June), 1–15.

    Google Scholar 

  • Tyagi, S., & Kramer, F. R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14(3), 303–308.

    Article  CAS  Google Scholar 

  • VálĂłczi, A., Hornyik, C., Varga, N., Burgyán, J., Kauppinen, S., & Havelda, Z. (2004). Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Research, 32(22), e175.

    Google Scholar 

  • Vilaivan, T. (2018). Fluorogenic PNA probes. Beilstein Journal of Organic Chemistry, 14, 253–281.

    Article  CAS  Google Scholar 

  • Wang, H., Tang, H., Yang, C., & Li, Y. (2019). Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core-shell Fe\(_3\)O\(_4\)-Au nanoparticles. Analytical Chemistry, 91(12), 7965–7970.

    Article  CAS  Google Scholar 

  • Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., & Drndić, M. (2010). Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotechnology, 5(11), 807–814.

    Google Scholar 

  • Wanunu, M. (2012). Nanopores: A journey towards DNA sequencing. Physics of Life Reviews, 9(2), 125–158.

    Article  Google Scholar 

  • Wen, S., et al. (2019). Plasmon coupling-enhanced raman sensing platform integrated with exonuclease-assisted target recycling amplification for ultrasensitive and selective detection of microRNA-21. Analytical Chemistry, 91(19), 12298–12306.

    Article  CAS  Google Scholar 

  • Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.

    Google Scholar 

  • Wu, K. L., Tsai, Y. M., Lien, C. T., Kuo, P. L., & Hung, J. Y. (2019). The roles of microRNA in lung cancer. International Journal of Molecular Sciences, 20(7), 1–25.

    Article  Google Scholar 

  • Xi, Q., et al. (2014). Highly sensitive and selective strategy for microRNA detection based on WS\(_2\) nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Analytical Chemistry, 86(3), 1361–1365.

    Article  CAS  Google Scholar 

  • Xu, F., et al. (2016). Ultrasensitive and multiple disease-related microRNA detection based on tetrahedral DNA nanostructures and duplex-specific nuclease-assisted signal amplification. ACS Applied Materials and Interfaces, 8(49), 33499–33505.

    Article  CAS  Google Scholar 

  • Yang, H., et al. (2009). Direct, electronic microRNA detection for the rapid determination of differential expression profiles. Angewandte Chemie - International Edition, 48(45), 8461–8464.

    Google Scholar 

  • Yang, X., Wang, S., Wang, Y., He, Y., Chai, Y., & Yuan, R. (2018). Stimuli-responsive DNA microcapsules for SERS sensing of trace microRNA. ACS Applied Materials and Interfaces, 10(15), 12491–12496.

    Article  CAS  Google Scholar 

  • Ye, J., Xu, M., Tian, X., Cai, S., & Zeng, S. (2019). Research advances in the detection of miRNA. Journal of Pharmaceutical Analysis, 9(4), 217–226.

    Article  Google Scholar 

  • Yu, A.-M., & Pan, Y.-Z. (2012). Noncoding microRNAs: Small RNAs play a big role in regulation of ADME? Acta Pharmaceutica Sinica B, 2(2), 93–101.

    Article  CAS  Google Scholar 

  • Zeng, Y., et al. (2017). Recent advances in surface plasmon resonance imaging: Detection speed, sensitivity, and portability. Nanophotonics, 6(5), 1017–1030.

    Article  Google Scholar 

  • Zhang, J., et al. (2016). An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosensors and Bioelectronics, 75, 452–457.

    Google Scholar 

  • Zhang, H., Hiratani, M., Nagaoka, K., & Kawano, R. (2017). MicroRNA detection at femtomolar concentrations with isothermal amplification and a biological nanopore. Nanoscale, 9(42), 16124–16127.

    Article  CAS  Google Scholar 

  • Zhang, H., Li, X., He, F., Zhao, M., & Ling, L. (2018). Turn-off colorimetric sensor for sequence-specific recognition of single-stranded DNA based upon Y-shaped DNA structure. Scientific Reports, 8(1), 1–8.

    Google Scholar 

  • Zhang, J., Li, Z., Wang, H., Wang, Y., Jia, H., & Yan, J. (2011). Ultrasensitive quantification of mature microRNAs by real-time PCR based on ligation of a ribonucleotide-modified DNA probe. Chemical Communications, 47(33), 9465–9467.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, Y., Fricke, B. L., & Gu, L. Q. (2014). Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano, 8(4), 3444–3450.

    Article  CAS  Google Scholar 

  • Zhao, X., Zhao, Y., Deng, Y., Zhou, D., Zhang, Z., & Huang, Q. (2018a). DNA translocation through solid-state nanopore. no. March.

    Google Scholar 

  • Zhao, G., et al. (2018b). Droplet digital PCR-based circulating microRNA detection serve as a promising diagnostic method for gastric cancer. BMC Cancer, 18(1), 1–10.

    Google Scholar 

  • Zhu, X., & Gao, T. (2018). Spectrometry. Amsterdam: Elsevier Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaker Tlili or Deqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djebbi, K. et al. (2021). Recent Advances in Ultrasensitive miRNA Biomarkers Detection. In: Kanoun, O., Derbel, N. (eds) Advanced Sensors for Biomedical Applications. Smart Sensors, Measurement and Instrumentation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-71225-9_9

Download citation

Publish with us

Policies and ethics