Skip to main content
Log in

Electrochemical microfluidic sensing platforms for biosecurity analysis

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, “biosecurity” is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright Elsevier) g Schematic illustration of the simultaneous microfluidic electrochemical biosensing system to detecting multiple biomarkers of pulmonary hypertension disease in a single device ((i) schematic description of the microfluidic system and (ii) schematic diagram of the experimental apparatus). h Principle of the on/off pneumatic microvalve ((i) valve-on status and (ii) valve-off status). (g and h, Reprinted with permission from Ref. [44]. Copyright Spring Nature)

Fig. 3

Copyright Elsevier) e Schematic illustration of the multichannel microfluidic sensor device for rapid detection of H1N1 influenza virus. f The performance of the multichannel microfluidic device detected six swine clinical samples. These sensing elements were exposed to the H1N1 negative and positive samples from swine lung homogenates, oral fluids, and nasal swabs. (e and f, Reprinted with permission from Ref. [34]. Copyright Elsevier) g Schematic of the microfluidic device fabrication by photolithography. (Reprinted with permission from Ref. [51]. Copyright Elsevier)

Fig. 4

Copyright MDPI) b Schematic of microfluidic chip for detection of ToRSV. c Selectivity data for ToRSV detection. (b and c, Reprinted with permission from Ref. [59]. Copyright MDPI) d Description of the lab-on-a-chip (LOC) device for the detection of Xylella fastidiosa. (Reprinted with permission from Ref. [60]. Copyright Spring Nature)

Fig. 5

Copyright John Wiley and Sons) b Schematic of microfluidic chip for Salmonella detection ((i) the synthesis of the immune enzymatic probes, (ii) the structure of the microfluidic chip, and (iii) the mechanism of the impedance biosensor for rapid and sensitive detection of Salmonella typhimurium). (Reprinted with permission from Ref. [69]. Copyright Elsevier) c Schematic of microfluidic chip for Vibrio parahaemolyticus. (Reprinted with permission from Ref. [36]. Copyright Elsevier)

Fig. 6

Copyright Elsevier) b Schematic representation of the electrochemical microfluidic aptasensor based on hierarchical 3D gold nano-/microislands (NMIs) for Cryptosporidium parvum detection. (b, Reprinted with permission from Ref. [37]. Copyright American Chemical Society)

Similar content being viewed by others

References

  1. Hemati S, Farhadkhani M, Sanami S, Mohammadi-Moghadam F. A review on insights and lessons from COVID-19 to the prevent of monkeypox pandemic. Travel Med Infect Dis. 2022;50. https://doi.org/10.1016/j.tmaid.2022.102441.

  2. Mwatondo A, Rahman-Shepherd A, Hollmann L, Chiossi S, Maina J, Kurup KK, Hassan OA, Coates B, Khan M, Spencer J, Mutono N, Thumbi SM, Muturi M, Mutunga M, Arruda LB, Akhbari M, Ettehad D, Ntoumi F, Scott TP, Nel LH, Ellis-Iversen J, Sönksen UW, Onyango D, Ismail Z, Simachew K, Wolking D, Kazwala R, Sijali Z, Bett B, Heymann D, Kock R, Zumla A, Dar O. A global analysis of One Health Networks and the proliferation of One Health collaborations. The Lancet. 2023;401:605–16. https://doi.org/10.1016/s0140-6736(22)01596-3.

    Article  Google Scholar 

  3. Khan MS, Rothman-Ostrow P, Spencer J, Hasan N, Sabirovic M, Rahman-Shepherd A, Shaikh N, Heymann DL, Dar O. The growth and strategic functioning of One Health networks: a systematic analysis. The Lancet Planetary Health. 2018;2:e264–73. https://doi.org/10.1016/s2542-5196(18)30084-6.

    Article  PubMed  Google Scholar 

  4. Quadripartite Memorandum of Understanding (MoU) signed for a new era of One Health collaboration. In: Quadripartite Memorandum of Understanding (MoU). WHO. 2022. https://www.who.int/news/item/29-04-2022-quadripartite-memorandum-of-understanding-(mou)-signed-for-a-new-era-of-one-health-collaboration. Accessed 15 Oct 2023.

  5. Huber N, Andraud M, Sassu EL, Prigge C, Zoche-Golob V, Käsbohrer A, D'Angelantonio D, Viltrop A, Żmudzki J, Jones H, Smith RP, Tobias T, Burow E. What is a biosecurity measure? A definition proposal for animal production and linked processing operations. One Health. 2022;15. https://doi.org/10.1016/j.onehlt.2022.100433.

  6. MacLeod A, Spence N, MacLeod A, Spence N. Biosecurity: tools, behaviours and concepts. Emerging Topics in Life Sciences. 2020;4:449–52. https://doi.org/10.1042/etls20200343.

    Article  PubMed  Google Scholar 

  7. Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Kamalesh R, Sneha S, Yaashikaa PR. Methods of detection of food-borne pathogens: a review. Environ Chem Lett. 2020;19:189–207. https://doi.org/10.1007/s10311-020-01072-z.

    Article  CAS  Google Scholar 

  8. Zhang Y, Zhu Y, Zeng Z, Zeng G, Xiao R, Wang Y, Hu Y, Tang L, Feng C. Sensors for the environmental pollutant detection: are we already there? Coord Chem Rev. 2021;431: 213681.

    Article  CAS  Google Scholar 

  9. Sanchis A, Salvador JP, Marco MP. Multiplexed immunochemical techniques for the detection of pollutants in aquatic environments. TrAC, Trends Anal Chem. 2018;106:1–10. https://doi.org/10.1016/j.trac.2018.06.015.

    Article  CAS  Google Scholar 

  10. Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N, Wang H, Li G, Wu Y. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC, Trends Anal Chem. 2019;121: 115668.

    Article  CAS  Google Scholar 

  11. Kant K. Microfluidic bio-sensors and their applications. Biosensors. 2023;13. https://doi.org/10.3390/bios13090843.

  12. Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev. 2015;44:5320–40. https://doi.org/10.1039/c4cs00369a.

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Li M, Zheng J, Zhang X, Zeng J, Liao Y, Chen J, Yang J, Zheng X, Hu N. Electrochemical detection of ascorbic acid in finger-actuated microfluidic chip. Micromachines. 2022;13. https://doi.org/10.3390/mi13091479.

  14. Jiang H, Jiang D, Zhu P, Pi F, Ji J, Sun C, Sun J, Sun X. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosens Bioelectron. 2016;83:126–33. https://doi.org/10.1016/j.bios.2016.04.028.

    Article  CAS  PubMed  Google Scholar 

  15. Bai S, Ma Y, Obata K, Sugioka K. Ultraminiaturized microfluidic electrochemical surface‐enhanced Raman scattering chip for analysis of neurotransmitters fabricated by ship‐in‐a‐bottle integration. Small Sci. 2023;3. https://doi.org/10.1002/smsc.202200093.

  16. Briggs CL. Communicating biosecurity. Med Anthropol. 2011;30:6–29. https://doi.org/10.1080/01459740.2010.531066.

    Article  PubMed  Google Scholar 

  17. Hulme PE, Beggs JR, Binny RN, Bray JP, Cogger N, Dhami MK, Finlay-Smits SC, French NP, Grant A, Hewitt CL, Jones EE, Lester PJ, Lockhart PJ. Emerging advances in biosecurity to underpin human, animal, plant, and ecosystem health. iScience. 2023;26. https://doi.org/10.1016/j.isci.2023.107462.

  18. Biosecurity beyond borders. Nat Food. 2021;2:449-. https://doi.org/10.1038/s43016-021-00332-7.

  19. Jappah JV, Smith DT. Global governmentality: biosecurity in the era of infectious diseases. Glob Public Health. 2015;10:1139–56. https://doi.org/10.1080/17441692.2015.1038843.

    Article  PubMed  Google Scholar 

  20. Patel R, Mitra B, Vinchurkar M, Adami A, Patkar R, Giacomozzi F, Lorenzelli L, Baghini MS. Plant pathogenicity and associated/related detection systems. A Review. Talanta. 2023;251. https://doi.org/10.1016/j.talanta.2022.123808.

  21. Wilkinson K, Grant WP, Green LE, Hunter S, Jeger MJ, Lowe P, Medley GF, Mills P, Phillipson J, Poppy GM, Waage J. Infectious diseases of animals and plants: an interdisciplinary approach. Philos Trans R Soc Lond B Biol Sci. 2011;366:1933–42. https://doi.org/10.1098/rstb.2010.0415.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang C, Wohlhueter R, Zhang H. Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness. 2016;5:116–23. https://doi.org/10.1016/j.fshw.2016.04.002.

    Article  Google Scholar 

  23. Najberek K, Olszańska A, Tokarska-Guzik B, Mazurska K, Dajdok Z, Solarz W. Invasive alien species as reservoirs for pathogens. Ecol Indic. 2022;139. https://doi.org/10.1016/j.ecolind.2022.108879.

  24. Kojima K, Booth CM, Summermatter K, Bennett A, Heisz M, Blacksell SD, McKinney M. Risk-based reboot for global lab biosafety. Science. 2018;360:260–2. https://doi.org/10.1126/science.aar2231.

    Article  CAS  PubMed  Google Scholar 

  25. Atlas RM. The medical threat of biological weapons. Crit Rev Microbiol. 1998;24:157–68. https://doi.org/10.1080/10408419891294280.

    Article  CAS  PubMed  Google Scholar 

  26. Ojuederie O, Babalola O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14121504.

  27. Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical methods for the analysis of milk. J Agric Food Chem. 2022;70:2427–49. https://doi.org/10.1021/acs.jafc.1c06350.

    Article  CAS  PubMed  Google Scholar 

  28. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73. https://doi.org/10.1038/nature05058.

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Xu X, Wang D, Jiang X. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. TrAC Trends Analyt Chem. 2023;158. https://doi.org/10.1016/j.trac.2022.116871.

  30. Mohan JM, Amreen K, Javed A, Dubey SK, Goel S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Curr Opin Electrochem. 2022;33. https://doi.org/10.1016/j.coelec.2021.100930.

  31. Li P, Xiong H, Yang B, Jiang X, Kong J, Fang X. Recent progress in CRISPR-based microfluidic assays and applications. TrAC Trends Analyt Chem. 2022;157. https://doi.org/10.1016/j.trac.2022.116812.

  32. Shin SR, Kilic T, Zhang YS, Avci H, Hu N, Kim D, Branco C, Aleman J, Massa S, Silvestri A, Kang J, Desalvo A, Hussaini MA, Chae SK, Polini A, Bhise N, Hussain MA, Lee H, Dokmeci MR, Khademhosseini A. Label‐free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv Sci. 2017;4. https://doi.org/10.1002/advs.201600522.

  33. Laleh S, Ibarlucea B, Stadtmüller M, Cuniberti G, Medina-Sánchez M. Portable microfluidic impedance biosensor for SARS-CoV-2 detection. Biosens Bioelectron. 2023;236. https://doi.org/10.1016/j.bios.2023.115362.

  34. Khan RR, Ibrahim H, Rawal G, Zhang J, Lu M, Dong L. Multichannel microfluidic virus sensor for rapid detection of respiratory viruses using virus-imprinted polymer for digital livestock farming. Sensors Actuators B: Chem. 2023;389. https://doi.org/10.1016/j.snb.2023.133920.

  35. Weng X, Li C, Chen C, Wang G, Xia C, Zheng L. A microfluidic device for tobacco ringspot virus detection by electrochemical impedance spectroscopy. Micromachines. 2023;14. https://doi.org/10.3390/mi14061118.

  36. Jiang H, Sun Z, Guo Q, Weng X. Microfluidic thread-based electrochemical aptasensor for rapid detection of Vibrio parahaemolyticus. Biosens Bioelectron. 2021;182. https://doi.org/10.1016/j.bios.2021.113191.

  37. Siavash Moakhar R, Mahimkar R, Khorrami Jahromi A, Mahshid SS, del Real Mata C, Lu Y, Vasquez Camargo F, Dixon B, Gilleard J, J Da Silva A, Ndao M, Mahshid S. Aptamer-based electrochemical microfluidic biosensor for the detection of Cryptosporidium parvum. ACS Sensors. 2023;8:2149–58. https://doi.org/10.1021/acssensors.2c01349.

  38. Wang L-L, Yang J-W, Xu J-F. Severe acute respiratory syndrome coronavirus 2 causes lung inflammation and injury. Clin Microbiol Infect. 2022;28:513–20. https://doi.org/10.1016/j.cmi.2021.11.022.

    Article  CAS  PubMed  Google Scholar 

  39. Crevillen AG, Mayorga‐Martinez CC, Vaghasiya JV, Pumera M. 3D‐printed SARS‐CoV‐2 RNA genosensing microfluidic system. Adv Mater Technol. 2022;7. https://doi.org/10.1002/admt.202101121.

  40. Wauchope BA, Coventry BJ, Roder DM. Increased Early Cancer Diagnosis: Unveiling Immune-Cancer Biology to Explain Clinical “Overdiagnosis”. Cancers. 2023;15. https://doi.org/10.3390/cancers15041139.

  41. Burinaru TA, Adiaconiţă B, Avram M, Preda P, Enciu A-M, Chiriac E, Mărculescu C, Constantin T, Militaru M. Electrochemical impedance spectroscopy based microfluidic biosensor for the detection of circulating tumor cells. Mater Today Commun. 2022;32. https://doi.org/10.1016/j.mtcomm.2022.104016.

  42. Keyvani F, Debnath N, Ayman Saleh M, Poudineh M. An integrated microfluidic electrochemical assay for cervical cancer detection at point-of-care testing. Nanoscale. 2022;14:6761–70. https://doi.org/10.1039/d1nr08252c.

    Article  CAS  PubMed  Google Scholar 

  43. Poujouly C, Le Gall J, Freisa M, Kechkeche D, Bouville D, Khemir J, Gonzalez-Losada P, Gamby J. Microfluidic chip for the electrochemical detection of microRNAs: methylene blue increasing the specificity of the biosensor. Front Chem. 2022;10. https://doi.org/10.3389/fchem.2022.868909.

  44. Lee G, Lee J, Kim J, Choi HS, Kim J, Lee S, Lee H. Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses. Sci Rep. 2017;7. https://doi.org/10.1038/s41598-017-06144-9.

  45. Singh N, Rai P, Ali MA, Kumar R, Sharma A, Malhotra BD, John R. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. Journal of Materials Chemistry B. 2019;7:3826–39. https://doi.org/10.1039/c9tb00126c.

    Article  CAS  Google Scholar 

  46. Jallow MM, Barry MA, Fall A, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Niang MN, Fall G, Fall M, Dia N. Influenza a virus in pigs in senegal and risk assessment of avian influenza virus (AIV) emergence and transmission to human. Microorganisms. 2023;11. https://doi.org/10.3390/microorganisms11081961.

  47. Shao W, Li X, Goraya M, Wang S, Chen J-L. Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18081650.

  48. Han J-H, Lee D, Chew CHC, Kim T, Pak JJ. A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens Actuators, B Chem. 2016;228:36–42. https://doi.org/10.1016/j.snb.2015.07.068.

    Article  CAS  Google Scholar 

  49. Wu TK, Bowman DD. Toxocara canis. Trends Parasitol. 2022;38:709–10. https://doi.org/10.1016/j.pt.2022.01.002.

    Article  PubMed  Google Scholar 

  50. Corda A, Tamponi C, Meloni R, Varcasia A, Parpaglia MLP, Gomez-Ochoa P, Scala A. Ultrasonography for early diagnosis of Toxocara canis infection in puppies. Parasitol Res. 2019;118:873–80. https://doi.org/10.1007/s00436-019-06239-4.

    Article  PubMed  Google Scholar 

  51. Jofre CF, Regiart M, Fernández-Baldo MA, Bertotti M, Raba J, Messina GA. Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe3O4 and CMK-8 for IgG anti-Toxocara canis determination. Anal Chim Acta. 2020;1096:120–9. https://doi.org/10.1016/j.aca.2019.10.040.

    Article  CAS  PubMed  Google Scholar 

  52. Elefant GR, Roldán WH, Seeböck A, Kosma P. Evaluation of a di-O-methylated glycan as a potential antigenic target for the serodiagnosis of human toxocariasis. Parasite Immunol. 2016;38:236–43. https://doi.org/10.1111/pim.12311.

    Article  CAS  PubMed  Google Scholar 

  53. Savary S. Plant health and food security. J Plant Pathol. 2020;102:605–7. https://doi.org/10.1007/s42161-020-00611-5.

    Article  Google Scholar 

  54. Oliver R. Globalizing plant health. Plant Pathol. 2021;71:226–35. https://doi.org/10.1111/ppa.13480.

    Article  Google Scholar 

  55. Dutta K, Talukdar D, Bora SS. Segmentation of unhealthy leaves in cruciferous crops for early disease detection using vegetative indices and Otsu thresholding of aerial images. Measurement. 2022;189. https://doi.org/10.1016/j.measurement.2021.110478.

  56. Roper JM, Garcia JF, Tsutsui H. Emerging Technologies for Monitoring Plant Health in Vivo. ACS Omega. 2021;6:5101–7. https://doi.org/10.1021/acsomega.0c05850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tabara M, Nagashima Y, He K, Qian X, Crosby KM, Jifon J, Jayaprakasha GK, Patil B, Koiwa H, Takahashi H, Fukuhara T. Frequent asymptomatic infection with tobacco ringspot virus on melon fruit. Virus Res. 2021;293. https://doi.org/10.1016/j.virusres.2020.198266.

  58. Choi J, Osatuke AC, Erich G, Stevens K, Hwang MS, Al Rwahnih M, Fuchs M. High-throughput sequencing reveals tobacco and tomato ringspot viruses in pawpaw. Plants. 2022;11. https://doi.org/10.3390/plants11243565.

  59. Li C, Ye B, Xi Y, Yuan M. Detection of tomato ringspot virus based on microfluidic impedance sensor. Micromachines. 2022;13. https://doi.org/10.3390/mi13101764.

  60. Chiriacò MS, Luvisi A, Primiceri E, Sabella E, De Bellis L, Maruccio G. Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-25747-4.

  61. Chassy BM. Food safety risks and consumer health. New Biotechnol. 2010;27:534–44. https://doi.org/10.1016/j.nbt.2010.05.018.

    Article  CAS  Google Scholar 

  62. Gallo M, Ferrara L, Calogero A, Montesano D, Naviglio D. Relationships between food and diseases: what to know to ensure food safety. Food Res Int. 2020;137. https://doi.org/10.1016/j.foodres.2020.109414.

  63. Guan T, Xu Z, Wang J, Liu Y, Shen X, Li X, Sun Y, Lei H. Multiplex optical bioassays for food safety analysis: toward on-site detection. Compr Rev Food Sci Food Saf. 2022;21:1627–56. https://doi.org/10.1111/1541-4337.12914.

    Article  PubMed  Google Scholar 

  64. Zhang J, Huang H, Song G, Huang K, Luo Y, Liu Q, He X, Cheng N. Intelligent biosensing strategies for rapid detection in food safety: a review. Biosens Bioelectron. 2022;202. https://doi.org/10.1016/j.bios.2022.114003.

  65. Li Y, Man S, Ye S, Liu G, Ma L. CRISPR-Cas-based detection for food safety problems: current status, challenges, and opportunities. Compr Rev Food Sci Food Saf. 2022;21:3770–98. https://doi.org/10.1111/1541-4337.13000.

    Article  CAS  PubMed  Google Scholar 

  66. Dhiman TK, Lakshmi G, Roychoudhury A, Jha SK, Solanki PR. Ceria-nanoparticles-based microfluidic nanobiochip electrochemical sensor for the detection of ochratoxin-a. ChemistrySelect. 2019;4:4867–73. https://doi.org/10.1002/slct.201803752.

    Article  CAS  Google Scholar 

  67. Bulgaru CV, Marin DE, Pistol GC, Taranu I. Zearalenone and the immune response. Toxins. 2021;13. https://doi.org/10.3390/toxins13040248.

  68. Hervás M, López MÁ, Escarpa A. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst. 2009;134. https://doi.org/10.1039/b911839j.

  69. Liu Y, Jiang D, Wang S, Cai G, Xue L, Li Y, Liao M, Lin J. A microfluidic biosensor for rapid detection of Salmonella typhimurium based on magnetic separation, enzymatic catalysis and electrochemical impedance analysis. Chin Chem Lett. 2022;33:3156–60. https://doi.org/10.1016/j.cclet.2021.10.064.

    Article  CAS  Google Scholar 

  70. Silva LRG, Stefano JS, Crapnell RD, Banks CE, Janegitz BC. Additive manufactured microfluidic device for electrochemical detection of carbendazim in honey samples. Talanta Open. 2023;7. https://doi.org/10.1016/j.talo.2023.100213.

  71. Wu C-C, Singh K, Ye J-X, Chuang Y-S, Wen H-W. A microfluidic chip integrating electrochemical impedimetric immunosensors constructed by top-bottom opposite electrodes for rapid detection of peanut allergen-Ara h 1. Sensors Actuators B: Chem. 2023;396. https://doi.org/10.1016/j.snb.2023.134637.

  72. Núñez-Delgado A, Ahmed W, Bontempi E, Domingo JL. The environment, epidemics, and human health. Environ Res. 2022;214. https://doi.org/10.1016/j.envres.2022.113931.

  73. Howarth MV, Eiser AR. Environmentally mediated health disparities. Am J Med. 2023;136:518–22. https://doi.org/10.1016/j.amjmed.2023.02.008.

    Article  CAS  PubMed  Google Scholar 

  74. Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: fiber optic sensors based on microfluidic chips. Sci Total Environ. 2023;857. https://doi.org/10.1016/j.scitotenv.2022.159563.

  75. Colao A, Muscogiuri G, Piscitelli P. Environment and health: not only cancer. Int J Environ Res Public Health. 2016;13. https://doi.org/10.3390/ijerph13070724.

  76. Mu J, Yang J-L, Zhang D-W, Jia Q. Progress in preparation of metal nanoclusters and their application in detection of environmental pollutants. Chin J Anal Chem. 2021;49:319–29. https://doi.org/10.1016/s1872-2040(21)60082-8.

    Article  CAS  Google Scholar 

  77. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 2017;182:247–68. https://doi.org/10.1016/j.gexplo.2016.11.021.

    Article  CAS  Google Scholar 

  78. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6: e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma S, Zhao W, Zhang Q, Zhang K, Liang C, Wang D, Liu X, Zhan X. A portable microfluidic electrochemical sensing platform for rapid detection of hazardous metal Pb2+ based on thermocapillary convection using 3D Ag-rGO-f-Ni(OH)2/NF as a signal amplifying element. J Hazard Mater. 2023;448. https://doi.org/10.1016/j.jhazmat.2023.130923.

  80. Huang Y, Han Y, Gao Y, Gao J, Ji H, He Q, Tu J, Xu G, Zhang Y, Han L. Electrochemical sensor array with nanoporous gold nanolayer and ceria@gold corona-nanocomposites enhancer integrated into microfluidic for simultaneous ultrasensitive lead ion detection. Electrochim Acta. 2021;373. https://doi.org/10.1016/j.electacta.2021.137921.

  81. Caetano FR, Carneiro EA, Agustini D, Figueiredo-Filho LCS, Banks CE, Bergamini MF, Marcolino-Junior LH. Combination of electrochemical biosensor and textile threads: a microfluidic device for phenol determination in tap water. Biosens Bioelectron. 2018;99:382–8. https://doi.org/10.1016/j.bios.2017.07.070.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 22134006, 22174137, 22322410 and 22004014), the Key Research and Development Projects of Jilin Scientific and Technological Development Program (Nos. 20210204126YY, 20230204113YY and SKL202302030), Cooperation Funding of Changchun with Chinese Academy of Sciences (No. 22SH13), Capital Construction Fund Projects within the Budget of Jilin Province (No. 2023C042-5), Natural Science Foundation of Science and Technology Department of Jilin Province (Joint Fund Project, No. YDZJ202201ZYTS340), and the Fundamental Research Funds for the Central Universities (No. 2412022ZD013).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Zhaowei Guan, Chong-Bo Ma, and Yan Du. Project administration: Yan Du. Supervision: Yan Du and Chong-Bo Ma. Writing and editing: Zhaowei Guan, Chong-Bo Ma, Quanyi Liu, and Yan Du. Funding acquisition: Yan Du and Chong-Bo Ma.

Corresponding authors

Correspondence to Chong-Bo Ma or Yan Du.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Emerging Trends in Electrochemical Analysis with guest editors Sabine Szunerits, Wei Wang, and Adam T. Woolley.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Liu, Q., Ma, CB. et al. Electrochemical microfluidic sensing platforms for biosecurity analysis. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05256-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05256-2

Keywords

Navigation