Skip to main content
Log in

Recent advances in microbial fuel cell–based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell–based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pasternak G, Greenman J, Ieropoulos I. Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring. Sens Actuators B. 2017;244:815–22. https://doi.org/10.1016/j.snb.2017.01.019.

    Article  CAS  Google Scholar 

  2. Zhou J, Battig MR, Wang Y. Aptamer-based molecular recognition for biosensor development. Anal Bioanal Chem. 2010;398(6):2471–80. https://doi.org/10.1007/s00216-010-3987-y.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron. 2023;237:115480. https://doi.org/10.1016/j.bios.2023.115480.

    Article  CAS  PubMed  Google Scholar 

  4. Lei ZL, Guo B. 2D Material-based optical biosensor: status and prospect. Adv Sci. 2022;9(4):2102924. https://doi.org/10.1002/advs.202102924.

    Article  CAS  Google Scholar 

  5. Katz E, Bückmann FA, Willner I. Self-powered enzyme-based biosensors. J Am Chem Soc. 2001;123:10752–3. https://doi.org/10.1021/ja0167102.

    Article  CAS  PubMed  Google Scholar 

  6. Gu C, Gai P, Li F. Construction of biofuel cells-based self-powered biosensors via design of nanocatalytic system. Nano Energy. 2022;93:106806. https://doi.org/10.1016/j.nanoen.2021.106806.

    Article  CAS  Google Scholar 

  7. Kurniawan TA, Othman MHD, Liang X, Ayub M, Goh HH, Kusworo TD, Mohyuddin A, Chew KW. Microbial fuel cells (MFC): a potential game-changer in renewable energy development. Sustainability. 2022;14(24):16847. https://doi.org/10.3390/su142416847.

    Article  CAS  Google Scholar 

  8. Wang L, Wu Y, You Z, Bao H, Zhang L, Wang J. Electrochemical impedance spectroscopy (EIS) reveals the role of microbial fuel cell-ceramic membrane bioreactor (MFC-CMBR): Electricity utilization and membrane fouling. Water Res. 2022;222:118854. https://doi.org/10.1016/j.watres.2022.118854.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem. 2018;410(17):3967–89. https://doi.org/10.1007/s00216-018-1080-0.

    Article  CAS  PubMed  Google Scholar 

  10. Gu C, Bai L, Pu L, Gai P, Li F. Highly sensitive and stable self-powered biosensing for exosomes based on dual metal-organic frameworks nanocarriers. Biosens Bioelectron. 2021;176:112907. https://doi.org/10.1016/j.bios.2020.112907.

    Article  CAS  PubMed  Google Scholar 

  11. ElMekawy A, Hegab HM, Pant D, Saint CP. Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring. J Appl Microbiol. 2018;124(1):302–13. https://doi.org/10.1111/jam.13631.

    Article  CAS  PubMed  Google Scholar 

  12. Gai P, Gu C, Hou T, Li F. Integration of biofuel cell-based self-powered biosensing and homogeneous electrochemical strategy for ultrasensitive and easy-to-use bioassays of microRNA. ACS Appl Mater Interfaces. 2018;10(11):9325–31. https://doi.org/10.1021/acsami.8b01001.

    Article  CAS  PubMed  Google Scholar 

  13. Guo D, Wei HF, Song RB, Fu J, Lu X, Jelinek R, Min Q, Zhang JR, Zhang Q, Zhu JJ. N, S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy. 2019;63:103875. https://doi.org/10.1016/j.nanoen.2019.103875.

    Article  CAS  Google Scholar 

  14. Sun JZ, Peter Kingori G, Si RW, Zhai DD, Liao ZH, Sun DZ, Zheng T, Yong YC. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol. 2015;71(6):801–9. https://doi.org/10.2166/wst.2015.035.

    Article  CAS  PubMed  Google Scholar 

  15. Chung TH, Dhar BR. Paper based platforms for microbial electrochemical cell-based biosensors: a review. Biosens Bioelectron. 2021;192:113485. https://doi.org/10.1016/j.bios.2021.113485.

    Article  CAS  PubMed  Google Scholar 

  16. Chang IS, Moon H, Jang JK, Kim BH. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron. 2005;20(9):1856–9. https://doi.org/10.1016/j.bios.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Hu J, Yang C, Pu W, Hou H, Xu J, Liu B, Yang J. Enhanced detection of toxicity in wastewater using a 2D smooth anode based microbial fuel cell toxicity sensor. RSC Adv. 2019;9(15):8700–6. https://doi.org/10.1039/c8ra10337b.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sivasankar P, Poongodi S, Seedevi P, Sivakumar M, Murugan T, Loganathan S. Bioremediation of wastewater through a quorum sensing triggered MFC: a sustainable measure for waste to energy concept. J Environ Manage. 2019;237:84–93. https://doi.org/10.1016/j.bios.2021.113485.

    Article  CAS  PubMed  Google Scholar 

  19. Catal T, Yavaser S, Enisoglu-Atalay V, Bermek H, Ozilhan S. Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresour Technol. 2018;268:116–20. https://doi.org/10.1016/j.biortech.2018.07.122.

    Article  CAS  PubMed  Google Scholar 

  20. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron. 2004;19(6):607–13. https://doi.org/10.1016/s0956-5663(03)00272-0.

    Article  CAS  PubMed  Google Scholar 

  21. Peixoto L, Min B, Martins G, Brito AG, Kroff P, Parpot P, Angelidaki I, Nogueira R. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry. 2011;81(2):99–103. https://doi.org/10.1016/j.bioelechem.2011.02.002.

    Article  CAS  PubMed  Google Scholar 

  22. Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol. 2013;47(4):2085–91. https://doi.org/10.1021/es3027659.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Zhu TJ, Lin CW, Liu SH. Sensitivity and reusability of a simple microbial fuel cell-based sensor for detecting bisphenol A in wastewater. Chemosphere. 2023;320:138082. https://doi.org/10.1016/j.chemosphere.2023.138082.

    Article  CAS  PubMed  Google Scholar 

  24. Varshney A, Sharma L, Pandit C, Gupta PK, Mathuriya AS, Pandit S, Lahiri D, Nag M, Upadhye VJ. Microbial fuel cell–based biosensors and applications. Appl Biochem Biotechnol. 2023;195(5):3508–31. https://doi.org/10.1007/s12010-023-04397-x.

    Article  CAS  PubMed  Google Scholar 

  25. Chung TH, Meshref MN, Dhar BR. A review and roadmap for developing microbial electrochemical cell-based biosensors for recalcitrant environmental contaminants, emphasis on aromatic compounds. Chem Eng J. 2021;424:130245. https://doi.org/10.1016/j.cej.2021.130245.

    Article  CAS  Google Scholar 

  26. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM. Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol Lett. 2008;30(8):1385–90. https://doi.org/10.1007/s10529-008-9707-4.

    Article  CAS  PubMed  Google Scholar 

  27. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron. 2008;24(4):586–90. https://doi.org/10.1016/j.bios.2008.06.006.

    Article  CAS  PubMed  Google Scholar 

  28. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Q, Nghiem DL, Thanh BX, Zhang X, Hoang NB. Performance of a dual-chamber microbial fuel cell as a biosensor for in situ monitoring Bisphenol A in wastewater. Sci Total Environ. 2022;845:157125. https://doi.org/10.1016/j.scitotenv.2022.157125.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Dong H, Wang X, Lu S, Ma Y, Song C, Wang S, Liu H. Microbial fuel cell-based biosensor for monitoring anaerobic biodegradation of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab. 2023;214:110409. https://doi.org/10.1016/j.polymdegradstab.2023.110409.

    Article  CAS  Google Scholar 

  30. Askari A, Vahabzadeh F, Mardanpour MM. Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor. J Cleaner Prod. 2021;294:126349. https://doi.org/10.1016/j.jclepro.2021.126349.

    Article  CAS  Google Scholar 

  31. Karube I, Matsunaga T, Mitsuda S, Suzuki S. Microbial electrode BOD sensors. Biotechnol Bioeng. 1977;19(10):1535–47. https://doi.org/10.1002/bit.260191010.

    Article  CAS  PubMed  Google Scholar 

  32. Wang C, Yin L, Wang S, Jin X, Yang J, Liu H. Role played by the physical structure of carbon anode materials in MFC biosensor for BOD measurement. Sci Total Environ. 2023;856:158848. https://doi.org/10.1016/j.scitotenv.2022.158848.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Quek SB, Cheng L, Cord-Ruwisch R. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. Water Res. 2015;77:64–71. https://doi.org/10.1016/j.watres.2015.03.012.

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Yu W, Graham N, Zhao Y. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. Chemosphere. 2021;264:128532. https://doi.org/10.1016/j.chemosphere.2020.128532.

    Article  CAS  PubMed  Google Scholar 

  35. Lu R, Chen Y, Wu J, Chen D, Wu Z, Xiao E. In situ COD monitoring with use of a hybrid of constructed wetland-microbial fuel cell. Water Res. 2022;210:117957. https://doi.org/10.1016/j.watres.2021.117957.

    Article  CAS  PubMed  Google Scholar 

  36. Xu L, Zhao Y, Fan C, Fan Z, Zhao F. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour Technol. 2017;243:846–54. https://doi.org/10.1016/j.biortech.2017.06.179.

    Article  CAS  PubMed  Google Scholar 

  37. Corbella C, Hartl M, Fernandez-Gatell M, Puigagut J. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci Total Environ. 2019;660:218–26. https://doi.org/10.1016/j.scitotenv.2018.12.347.

    Article  ADS  PubMed  Google Scholar 

  38. Jia H, Yang G, Wang J, Ngo HH, Guo W, Zhang H, Zhang X. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor. Bioresour Technol. 2016;218:286–93. https://doi.org/10.1016/j.biortech.2016.06.064.

    Article  CAS  PubMed  Google Scholar 

  39. Feng Y, Harper WF Jr. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations. J Environ Manage. 2013;130:369–74. https://doi.org/10.1016/j.jenvman.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  40. Guo F, Liu H. Impact of heterotrophic denitrification on BOD detection of the nitrate-containing wastewater using microbial fuel cell-based biosensors. Chem Eng J. 2020;394:125042. https://doi.org/10.1016/j.cej.2020.125042.

    Article  CAS  Google Scholar 

  41. Ayyaru S, Dharmalingam S. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal Chim Acta. 2014;818:15–22. https://doi.org/10.1016/j.aca.2014.01.059.

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Tian S, Zhang P, Ye J, Tao X, Li F, Zhou Z, Nabi M. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. J Environ Manage. 2019;252:109682. https://doi.org/10.1016/j.jenvman.2019.109682.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Niu CG, Zeng GM, Hu WJ, Huang DW, Ruan M. Microbial fuel cell using ferrous ion activated persulfate as a cathodic reactant. Int J Hydrogen Energy. 2011;36(23):15344–51. https://doi.org/10.1016/j.ijhydene.2011.08.071.

    Article  CAS  Google Scholar 

  44. Nakamura H, Abe Y, Koizumi R, Suzuki K, Mogi Y, Hirayama T, Karube I. A chemiluminescence biochemical oxygen demand measuring method. Anal Chim Acta. 2007;602(1):94–100. https://doi.org/10.1016/j.aca.2007.08.050.

    Article  CAS  PubMed  Google Scholar 

  45. Oota S, Hatae Y, Amada K, Koya H, Kawakami M. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater. Biosens Bioelectron. 2010;26(1):262–6. https://doi.org/10.1016/j.bios.2010.06.040.

    Article  CAS  PubMed  Google Scholar 

  46. Wei L, Han H, Shen J. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. Int J Hydrogen Energy. 2012;37(17):12980–6. https://doi.org/10.1016/j.ijhydene.2012.05.068.

    Article  CAS  Google Scholar 

  47. Sindhuja M, Harinipriya S, Bala AC, Ray AK. Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction. J Hazard Mater. 2018;355:197–205. https://doi.org/10.1016/j.jhazmat.2018.05.030.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Y, Yang X, Liang P, Liu P, Huang X. Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges. Renew Sust Energ Rev. 2018;81:292–305. https://doi.org/10.1016/j.rser.2017.06.099.

    Article  CAS  Google Scholar 

  49. Spurr MWA, Yu EH, Scott K, Head IM. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environ Sci Water Res Technol. 2018;4(12):2029–40. https://doi.org/10.1039/c8ew00497h.

    Article  CAS  Google Scholar 

  50. Modin O, Wilen BM. A novel bioelectrochemical BOD sensor operating with voltage input. Water Res. 2012;46(18):6113–20. https://doi.org/10.1016/j.watres.2012.08.042.

    Article  CAS  PubMed  Google Scholar 

  51. Moon H, Chang IS, Kang KH, Jang JK, Kim BH. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett. 2004;26:1717–21. https://doi.org/10.1007/s10529-004-3743-5.

    Article  CAS  PubMed  Google Scholar 

  52. Naik S, Eswari JS. Experimental and validation with neural network time series model of microbial fuel cell bio-sensor for phenol detection. J Environ Manage. 2021;290:112594. https://doi.org/10.1016/j.jenvman.2021.112594.

    Article  CAS  PubMed  Google Scholar 

  53. Kaur A, Ibrahim S, Pickett CJ, Michie IS, Dinsdale RM, Guwy AJ, Premier GC. Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sens Actuators B. 2014;201:266–73. https://doi.org/10.1016/j.snb.2014.04.062.

    Article  CAS  Google Scholar 

  54. Zhang Y, Angelidaki I. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens Bioelectron. 2012;38(1):189–94. https://doi.org/10.1016/j.bios.2012.05.032.

    Article  CAS  PubMed  Google Scholar 

  55. Song N, Yan Z, Xu H, Yao Z, Wang C, Chen M, Zhao Z, Peng Z, Wang C, Jiang HL. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci Total Environ. 2019;673:272–80. https://doi.org/10.1016/j.scitotenv.2019.04.032.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Dai Z, Xu Z, Wang T, Fan Y, Liu Y, Yu R, Zhu G, Lu X, Li B. In-situ oil presence sensor using simple-structured upward open-channel microbial fuel cell (UOC-MFC). Biosens Bioelectron X. 2019;1:100014. https://doi.org/10.1016/j.biosx.2019.100014.

    Article  CAS  Google Scholar 

  57. Dai Z, Yu R, Zha X, Xu Z, Zhu G, Lu X. On-line monitoring of minor oil spills in natural waters using sediment microbial fuel cell sensors equipped with vertical floating cathodes. Sci Total Environ. 2021;782:146549. https://doi.org/10.1016/j.scitotenv.2021.146549.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Chung H, Ju WJ, Jho EH, Nam K. Applicability of a submersible microbial fuel cell for Cr(VI) detection in water. Environ Monit Assess. 2016;188(11):613. https://doi.org/10.1007/s10661-016-5625-4.

    Article  CAS  PubMed  Google Scholar 

  59. Liu W, Zhou Z, Yin L, Zhu Y, Zhao J, Zhu B, Zheng L, Jin Q, Wang L. A novel self-powered bioelectrochemical sensor based on CoMn2O4 nanoparticle modified cathode for sensitive and rapid detection of hydrogen peroxide. Sens Actuators B. 2018;271:247–55. https://doi.org/10.1016/j.snb.2018.05.070.

    Article  CAS  Google Scholar 

  60. Lin Z, Cheng S, Li H, Li L. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water. Sci Total Environ. 2022;806(Pt 4):150945. https://doi.org/10.1016/j.scitotenv.2021.150945.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Yu YY, Ding XL, Quan WZ, Niu Q, Fang Z, Dapaah MF, You T, Xiao X, Cheng L. Dynamically controlling the electrode potential of a microbial fuel cell-powered biocathode for sensitive quantification of nitrate. Electrochim Acta. 2021;369:137661. https://doi.org/10.1016/j.electacta.2020.137661.

    Article  CAS  Google Scholar 

  62. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev. 2015;115(9):3433–67. https://doi.org/10.1021/cr500519c.

    Article  CAS  PubMed  Google Scholar 

  63. Pu L, Li K, Chen Z, Zhang P, Zhang X, Fu Z. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells. J Power Sources. 2014;268:476–81. https://doi.org/10.1016/j.jpowsour.2014.06.071.

    Article  CAS  Google Scholar 

  64. Wang X, Feng C, Ding N, Zhang Q, Li N, Li X, Zhang Y, Zhou Q. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells. Environ Sci Technol. 2014;48(7):4191–8. https://doi.org/10.1021/es5002506.

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Zhu NW, Lu Y, Liu BW, Zhang TP, Huang JJ, Shi CH, Wu PX, Dang Z, Wang RX. CoMn2O4-supported functionalized carbon nanotube: efficient catalyst for oxygen reduction in microbial fuel cells. 2017;19:331. https://doi.org/10.1007/s11051-017-4023-3.

  66. Huang J, Zhu N, Yang T, Zhang T, Wu P, Dang Z. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron. 2015;72:332–9. https://doi.org/10.1016/j.bios.2015.05.035.

    Article  CAS  PubMed  Google Scholar 

  67. Costa de Oliveira MA, Mecheri B, D’Epifanio A, Zurlo F, Licoccia S. Optimization of PGM-free cathodes for oxygen reduction in microbial fuel cells. Electrochim Acta. 2020;334:135650. https://doi.org/10.1016/j.electacta.2020.135650.

    Article  CAS  Google Scholar 

  68. Mohan SV, Srikanth S. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Bioresour Technol. 2011;102(22):10210–20. https://doi.org/10.1016/j.biortech.2011.08.034.

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Zhou S. Efficacy of Cu(II) as an electron-shuttle mediator for improved bioelectricity generation and Cr(VI) reduction in microbial fuel cells. Bioresour Technol. 2019;273:122–9. https://doi.org/10.1016/j.biortech.2018.10.074.

    Article  CAS  PubMed  Google Scholar 

  70. Askari A, Vahabzadeh F, Mardanpour MM. Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor. J Clean Prod. 2021; 294. https://doi.org/10.1016/j.jclepro.2021.126349.

  71. Yu YY, Ding XL, Quan WZ, Niu Q, Fang Z, Dapaah MF, You T, Xiao X, Cheng L. Dynamically controlling the electrode potential of a microbial fuel cell-powered biocathode for sensitive quantification of nitrate. Electrochimica Acta. 2021; 369. https://doi.org/10.1016/j.electacta.2020.137661.

  72. Min B, Roman OB, Angelidaki I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett. 2008;30(7):1213–8. https://doi.org/10.1007/s10529-008-9687-4.

    Article  CAS  PubMed  Google Scholar 

  73. Ma Y, Deng D, Zhan Y, Cao L, Liu Y. A systematic study on self-powered microbial fuel cell based BOD biosensors running under different temperatures. Biochem Eng J. 2022;180:108372. https://doi.org/10.1016/j.bej.2022.108372.

    Article  CAS  Google Scholar 

  74. Tran TTT, Kannoorpatti K, Padovan A, Thennadil S. Sulphate-reducing bacteria’s response to extreme pH environments and the effect of their activities on microbial corrosion. Appl Sci. 2021;11(5):2201. https://doi.org/10.3390/app11052201.

    Article  CAS  Google Scholar 

  75. Yu D, Bai L, Zhai J, Wang Y, Dong S. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta. 2017;168:210–6. https://doi.org/10.1016/j.talanta.2017.03.048.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang K, Cao H, Chen J, Wang T, Luo H, Chen W, Mo Y, Li L, An X, Zhang X. Microbial fuel cell (MFC)-based biosensor for combined heavy metals monitoring and associated bioelectrochemical process. Int J Hydrogen Energy. 2022;47(49):21231–40. https://doi.org/10.1016/j.ijhydene.2022.04.225.

    Article  CAS  Google Scholar 

  77. Stein NE, Hamelers HV, van Straten G, Keesman KJ. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensors. 2012;2(3):255–68. https://doi.org/10.3390/bios2030255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li T, Wang X, Zhou L, An J, Li J, Li N, Sun H, Zhou Q. Bioelectrochemical sensor using living biofilm to in situ evaluate flocculant toxicity. ACS Sens. 2016;1(11):1374–9. https://doi.org/10.1021/acssensors.6b00571.

    Article  CAS  Google Scholar 

  79. Stein NE, Hamelers HVM, Buisman CNJ. The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sens Actuators B. 2012;171–172:816–21. https://doi.org/10.1016/j.snb.2012.05.076.

    Article  CAS  Google Scholar 

  80. Zeng L, Li X, Shi Y, Qi Y, Huang D, Tade M, Wang S, Liu S. FePO(4) based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosens Bioelectron. 2017;91:367–73. https://doi.org/10.1016/j.bios.2016.12.021.

    Article  CAS  PubMed  Google Scholar 

  81. Santoro C, Mohidin AF, Grasso LL, Seviour T, Palanisamy K, Hinks J, Lauro FM, Marsili E. Sub-toxic concentrations of volatile organic compounds inhibit extracellular respiration of Escherichia coli cells grown in anodic bioelectrochemical systems. Bioelectrochemistry. 2016;112:173–7. https://doi.org/10.1016/j.bioelechem.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  82. Naik S, Jujjavarapu SE. Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water. J Environ Chem Eng. 2021;9(4):105318. https://doi.org/10.1016/j.jece.2021.105318.

    Article  CAS  Google Scholar 

  83. Lu H, Yu Y, Xi H, Wang C, Zhou Y. Bacterial response to formaldehyde in an MFC toxicity sensor. Enzyme Microb Technol. 2020;140:109565. https://doi.org/10.1016/j.enzmictec.2020.109565.

    Article  CAS  PubMed  Google Scholar 

  84. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Sharma P, Pandey A, Bui XT, Zhang X. Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater. Sci Total Environ. 2021;795:148755. https://doi.org/10.1016/j.scitotenv.2021.148755.

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Xu YS, Zheng T, Yong XY, Zhai DD, Si RW, Li B, Yu YY, Yong YC. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Bioresour Technol. 2016;211:542–7. https://doi.org/10.1016/j.biortech.2016.03.144.

    Article  CAS  PubMed  Google Scholar 

  86. Yi Y, Xie B, Zhao T, Liu H. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism. Bioresour Technol. 2018;265:415–21. https://doi.org/10.1016/j.biortech.2018.06.037.

    Article  CAS  PubMed  Google Scholar 

  87. Pan J, Hu J, Liu B, Li J, Wang D, Bu C, Wang X, Xiao K, Liang S, Yang J, Hou H. Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor. Environ Res. 2020;181:108906. https://doi.org/10.1016/j.envres.2019.108906.

    Article  CAS  PubMed  Google Scholar 

  88. Yi Y, Xie B, Zhao T, Li Z, Stom D, Liu H. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants. Bioelectrochemistry. 2019;125:71–8. https://doi.org/10.1016/j.bioelechem.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  89. Li T, Liao C, An J, Zhou L, Tian L, Zhou Q, Li N, Wang X. A highly sensitive bioelectrochemical toxicity sensor and its evaluation using immediate current attenuation. Sci Total Environ. 2021;766:142646. https://doi.org/10.1016/j.scitotenv.2020.142646.

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Li T, Zhou Q, Zhou L, Yan Y, Liao C, Wan L, An J, Li N, Wang X. Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Water Res. 2020;177:115776. https://doi.org/10.1016/j.watres.2020.115776.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang Y, Liang P, Zhang C, Bian Y, Yang X, Huang X, Girguis PR. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials. Bioresour Technol. 2015;190:367–72. https://doi.org/10.1016/j.biortech.2015.04.127.

    Article  CAS  PubMed  Google Scholar 

  92. Zhou T, Han H, Liu P, Xiong J, Tian F, Li X. Microbial fuels cell-based biosensor for toxicity detection: a review. Sensors. 2017;17(10):2230. https://doi.org/10.3390/s17102230.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davila D, Esquivel JP, Sabate N, Mas J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron. 2011;26(5):2426–30. https://doi.org/10.1016/j.bios.2010.10.025.

    Article  CAS  PubMed  Google Scholar 

  94. Yu D, Zhang H, Bai L, Fang Y, Liu C, Zhang H, Li T, Han L, Yu Y, Yu H. Visual detection of the toxicity of wastewater containing heavy metal ions using a microbial fuel cell biosensor with a Prussian blue cathode. Sens Actuators B. 2020;302:127177. https://doi.org/10.1016/j.snb.2019.127177.

    Article  CAS  Google Scholar 

  95. Santoro C, Babanova S, Cristiani P, Artyushkova K, Atanassov P, Bergel A, Bretschger O, Brown RK, Carpenter K, Colombo A, Cortese R, Erable B, Harnisch F, Kodali M, Phadke S, Riedl S, Rosa LFM, Schroder U. How comparable are microbial electrochemical systems around the globe? An Electrochemical and Microbiological Cross-Laboratory Study. Chemsuschem. 2021;14(11):2313–30. https://doi.org/10.1002/cssc.202100294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang Y, Liang P, Liu P, Wang D, Miao B, Huang X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens Bioelectron. 2017;94:344–50. https://doi.org/10.1016/j.bios.2017.02.052.

    Article  CAS  PubMed  Google Scholar 

  97. Jiang Y, Liang P, Huang X, Ren ZJ. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere. 2018;203:21–5. https://doi.org/10.1016/j.chemosphere.2018.03.169.

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Prevoteau A, Clauwaert P, Kerckhof FM, Rabaey K. Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. Biosens Bioelectron. 2019;132:115–21. https://doi.org/10.1016/j.bios.2019.02.037.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou M, He H, Jin T, Wang H. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources. 2012;214:216–9. https://doi.org/10.1016/j.jpowsour.2012.04.043.

    Article  CAS  Google Scholar 

  100. Kakarla R, Min B. Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrogen Energy. 2014;39(19):10275–83. https://doi.org/10.1016/j.ijhydene.2014.04.158.

    Article  CAS  Google Scholar 

  101. Gonzalez Olias L,Cameron PJ,Di Lorenzo M. Effect of electrode properties on the performance of a photosynthetic microbial fuel cell for atrazine detection. Front Energy Res. 2019; 7. https://doi.org/10.3389/fenrg.2019.00105.

  102. Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron. 2010;25(12):2639–43. https://doi.org/10.1016/j.bios.2010.04.036.

    Article  CAS  PubMed  Google Scholar 

  103. Liao C, Wu J, Zhou L, Li T, Du Q, An J, Li N, Wang X. Optimal set of electrode potential enhances the toxicity response of biocathode to formaldehyde. Sci Total Environ. 2018;644:1485–92. https://doi.org/10.1016/j.scitotenv.2018.07.114.

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Safwat SM, Khaled A, Elawwad A, Matta ME. Dual-chamber microbial fuel cells as biosensors for the toxicity detection of benzene, phenol, chromium, and copper in wastewater: Applicability investigation, effect of various catholyte solutions, and life cycle assessment. Process Saf Environ Prot. 2023;170:1121–36. https://doi.org/10.1016/j.psep.2022.12.088.

    Article  CAS  Google Scholar 

  105. Wang Q, Lv R, Rene ER, Qi X, Hao Q, Du Y, Zhao C, Xu F, Kong Q. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater. Bioresour Technol. 2020;302:122867. https://doi.org/10.1016/j.biortech.2020.122867.

    Article  CAS  PubMed  Google Scholar 

  106. Fillet R, Nicolas V, Fierro V, Celzard A. A review of natural materials for solar evaporation. Sol Energy Mater Sol Cells. 2021;219:110814. https://doi.org/10.1016/j.solmat.2020.110814.

    Article  CAS  Google Scholar 

Download references

Funding

This study is funded by the National Natural Science Foundation of China (22174131, 5200161) and National Natural Science Foundation of Henan Province (232300421089).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing—original draft preparation: J.X. and Y.W. Project administration: Y.J. Resources, investigation: X.L. and S.C. Supervision, validation: R.S. Formal analysis, writing—review and editing: Y.X. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ying Xu or Rong-Bin Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Emerging Trends in Electrochemical Analysis with guest editors Sabine Szunerits, Wei Wang, and Adam T. Woolley.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wang, Y., Jing, Y. et al. Recent advances in microbial fuel cell–based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05230-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05230-y

Keywords

Navigation