Skip to main content
Log in

Fluorescent aptasensor mediated with multiple ssDNA for sensitive detection of acetamiprid in vegetables based on magnetic Fe3O4/C-assisted separation

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Acetamiprid (ACE) is a highly effective broad-spectrum insecticide, and its widespread use is potentially harmful to human health and environmental safety. In this study, magnetic Fe3O4/carbon (Fe3O4/C), a derivative of metal–organic framework MIL-101 (Fe), was synthesized by a two-step calcination method. And a fluorescent sensing strategy was developed for the efficient and sensitive detection of ACE using Fe3O4/C and multiple complementary single-stranded DNA (ssDNA). By using aptamer with multiple complementary ssDNA, the immunity of interference of the aptasensor was improved, and the aptasensor showed high selectivity and sensitivity. When ACE was present, the aptamer (Apt) combined with ACE. The complementary strand of Apt (Cs1) combined with two short complementary strands of Cs1, fluorophore 6-carboxyfluorescein-labeled complementary strand (Cs2-FAM) and the other strand Cs3. The three strands formed a double-stranded structure, and fluorescence would not be quenched by Fe3O4/C. In the absence of ACE, Cs2-FAM would be in a single-chain state and would be adsorbed by Fe3O4/C, and the fluorescence of FAM would be quenched by Fe3O4/C via photoelectron transfer. This aptasensor sensitively detected ACE over a linear concentration range of 10–1000 nM with a limit of detection of 3.41 nM. The recoveries of ACE spiked in cabbage and celery samples ranged from 89.49% to 110.76% with high accuracy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Phogat A, Singh J, Kumar V, Malik V. Toxicity of the acetamiprid insecticide for mammals: a review. Environ Chem Lett. 2022;20:1453–78.

    Article  CAS  Google Scholar 

  2. Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environ Sci Process Impacts. 2020;22(6):1315–46.

    Article  CAS  PubMed  Google Scholar 

  3. Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, et al. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 2021;18(3):1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tartaglia A, Locatelli M, Samanidou V. Trends in the analysis of biopharmaceuticals by HPLC. Curr Anal Chem. 2020;16(1):52–8.

    Article  CAS  Google Scholar 

  5. Lawal A, Wong RCS, Tan GH, Abdulra’uf LB, Alsharif AMA. Recent modifications and validation of QuEChERS-dSPE coupled to LC–MS and GC–MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables. J Chromatogr Sci. 2018;56(7):656–69.

  6. Elmastas A, Umaz A, Pirinc V, Aydin F. Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC–MS/MS and GC–MS/MS. Environ Monit Assess. 2023;195(2):277.

    Article  CAS  PubMed  Google Scholar 

  7. Stachniuk A, Szmagara A, Czeczko R, Fornal E. LC-MS/MS determination of pesticide residues in fruits and vegetables. J Environ Sci Health B. 2017;52(7):446–57.

    Article  CAS  PubMed  Google Scholar 

  8. Walorczyk S, Gnusowski B. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 2006;1128(1–2):236–43.

    Article  CAS  PubMed  Google Scholar 

  9. Pundir CS, Malik A, Preety. Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron. 2019;140:111348.

  10. Wang K, Wang M, Ma T, Li W, Zhang H. Review on the selection of aptamers and application in paper-based sensors. Biosensors. 2022;13(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie M, Zhao F, Zhang Y, Xiong Y, Han S. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control. 2022;131:108399.

    Article  CAS  Google Scholar 

  12. Saberi Z, Rezaei B, Ensafi AA. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Microchim Acta. 2019;186:1–7.

    Article  CAS  Google Scholar 

  13. Liang C, Wang Y, Zhang T, Nie H, Han Y, Bai J. Aptamer-functionalised metal-organic frameworks as an ‘on–off–on’ fluorescent sensor for bisphenol S detection. Talanta. 2023;253:123942.

    Article  CAS  PubMed  Google Scholar 

  14. Wu L, Wang Y, Xu X, Liu Y, Zhang M, Zhang J, et al. Aptamer-based detection of circulating targets for precision medicine. Chem Rev. 2021;121(19):12035–105.

    Article  CAS  PubMed  Google Scholar 

  15. Deore PS, Manderville RA. Ratiometric fluorescent sensing of the parallel G-quadruplex produced by PS2.M: implications for K+ detection. Analyst. 2020;145:1288–93.

  16. Chen J, Liu J, Wang J, Zhang Y, Wang X, Zhou N. Fluorescent biosensor based on FRET and catalytic hairpin assembly for sensitive detection of polysialic acid by using a new screened DNA aptamer. Talanta. 2022;242:123282.

    Article  CAS  PubMed  Google Scholar 

  17. Geng W, Feng Y, Chen Y, Zhang X, Zhang H, Yang F, et al. Interactions of amino group functionalized tetraphenylvinyl and DNA: a label-free “on-off-on” fluorescent aptamer sensor toward ampicillin. Biosensors. 2023;13(5):504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Podder A, Lee HJ, Kim BH. Fluorescent nucleic acid systems for biosensors. Bull Chem Soc Jpn. 2021;94(3):1010–35.

    Article  CAS  Google Scholar 

  19. Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, et al. Aptasensors for pesticide detection. Biosens Bioelectron. 2019;130:174–84.

    Article  CAS  PubMed  Google Scholar 

  20. Wu L, Wang Z, Zhao S, Meng X, Song X, Feng J, et al. A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury (II) ion detection. Chem Eur J. 2016;22(2):477–80.

  21. Liu X, Zhao Y, Li F. Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing. Biosens Bioelectron. 2021;173:112832.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng W, Tang X, Zhang Y, Wu D, Yang W. Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances. Trends Food Sci Technol. 2021;112:268–82.

    Article  CAS  Google Scholar 

  23. Qi H, Wang Z, Li H, Li F. Directionally in situ self-assembled iridium(III)-polyimine complex-encapsulated metal–organic framework two-dimensional nanosheet electrode to boost electrochemiluminescence sensing. Anal Chem. 2023;95:12024–31.

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Su C, Liu N, Lu Q, Zhang N, Sun C, et al. Zeolitic imidazolate framework/aptamer-based fluorescence assay for the facile and high-sensitivity detection of acetamiprid. Anal Chim Acta. 2023;1276:341641.

    Article  CAS  PubMed  Google Scholar 

  25. Tavassoli M, Khezerlou A, Khalilzadeh B, Ehsani A, Kazemian H. Aptamer-modified metal organic frameworks for measurement of food contaminants: a review. Microchim Acta. 2023;190(9):371.

    Article  CAS  Google Scholar 

  26. Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian J, et al. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol. 2021;118:569–88.

    Article  CAS  Google Scholar 

  27. Mishra G, Sharma V, Mishra R. Electrochemical aptasensors for food and environmental safeguarding: a review. Biosensors. 2018;8(2):28.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marimuthu M, Arumugam SS, Sabarinathan D, Li H, Chen Q. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci Technol. 2021;116:1002–28.

    Article  CAS  Google Scholar 

  29. Zhang S, Rong F, Guo C, Duan F, He L, Zhang Z, et al. Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev. 2021;439:213948.

    Article  CAS  Google Scholar 

  30. Li W, Wu X, Li S, Tang W, Chen Y. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst. Appl Surf Sci. 2018;436:252–62.

    Article  ADS  CAS  Google Scholar 

  31. Sun Y, Zhang Y, Wang Z. A “turn-on” FRET aptasensor based on the metal-organic framework-derived porous carbon and silver nanoclusters for zearalenone determination. Sens Actuators B Chem. 2021;347:130661.

    Article  CAS  Google Scholar 

  32. Xu Y, Zhang W, Shi J, Li Z, Huang X, Zou X, et al. Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables. Food Chem. 2020;322:126762.

    Article  CAS  PubMed  Google Scholar 

  33. Shen Z, Xu D, Wang G, Geng L, Xu R, Wang G, et al. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. J Hazard Mater. 2022;440:129707.

    Article  CAS  PubMed  Google Scholar 

  34. Su Z, Ye F, He K, Yang T, Li W, Ren J. Determination of acetamiprid by fluorescence monitoring of a glycine-l-histidine copper-organic framework aptasensor. Anal Lett. 2022;55(4):529–38.

    Article  CAS  Google Scholar 

  35. He K, Dong S, Yang J, Shi Q, Guan L, Sun L, et al. Efficient and switchable aptamer “fluorescence off/on” method based on UiO-66@ Cu for ultrasensitive detection of acetamiprid. J Environ Chem Eng. 2022;10(4):108178.

    Article  CAS  Google Scholar 

  36. Bahreyni A, Robati RY, Ramezani M, Abnous K, Taghdisi SM. Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Microchim Acta. 2018;185:1–7.

    Article  CAS  Google Scholar 

  37. Xu C, Lin M, Song C, Chen D, Bian C. A gold nanoparticle-based visual aptasensor for rapid detection of acetamiprid residues in agricultural products using a smartphone. RSC Adv. 2022;12(9):5540–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei W, Huang Q. Preparation of cellophane-based substrate and its SERS performance on the detection of CV and acetamiprid. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;193:8–13.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.32372438, 31772068), the Central Finance Guidance Local Science and Technology Development Fund Project (YDZX2022163), the Natural Science Foundation of Shandong Province (ZR2023MC088), the Shandong Province Major Applied Technology Innovation Project (SD2019NJ007), the Technological Innovation Guidance Project of the Department of Science &Technology of Gansu Province (22CX8NA023), and the Weifang Science and Technology Development Project (2021ZJ1103).

Author information

Authors and Affiliations

Authors

Contributions

B.L.: conceptualization, methodology, formal analysis, and writing, original draft. H.W.: investigation, formal analysis, and validation. M.L.: writing, review and editing, and investigation. L.G.: investigation, formal analysis, and validation. S.D.: investigation and resources. S.Z.: investigation and resources. J.L.: investigation and resources. J.S.: investigation and resources. W.Z.: writing, review and editing. Y.G.: writing, review and editing, supervision, project administration, and funding acquisition. X.S.: writing, review and editing.

Corresponding author

Correspondence to Yemin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, H., Liu, M. et al. Fluorescent aptasensor mediated with multiple ssDNA for sensitive detection of acetamiprid in vegetables based on magnetic Fe3O4/C-assisted separation. Anal Bioanal Chem 416, 1105–1115 (2024). https://doi.org/10.1007/s00216-023-05104-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05104-9

Keywords

Navigation