Skip to main content
Log in

Few-layered boron nitride nanosheet as a non-metallic phosphatase nanozyme and its application in human urine phosphorus detection

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Human urine phosphorus (existing in the form of phosphate) is a biomarker for the diagnosis of several diseases such as kidney disease, hyperthyroidism, and rickets. Therefore, the selective detection of phosphate in urine samples is crucial in the field of clinical diagnosis. Herein, we reported the phosphatase-like catalytic activity of few-layered h-BNNS for the first time. As the phosphatase-like activity of few-layered h-BNNS could be effectively inhibited by phosphate, a selective fluorescent method for the detection of phosphate was proposed. The linear range for phosphate detection is 0.5–10 µM with a detection limit of 0.33 µM. The fluorescent method was then explored for the detection of human urine phosphorus in real samples. The results obtained by the proposed method were consistent with those of the traditional method, indicating that the present method has potential application for urine phosphorus detection in clinical disease diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  PubMed  Google Scholar 

  2. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76. https://doi.org/10.1039/c8cs00457a.

    Article  CAS  Google Scholar 

  3. Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Acc Mater Res. 2021;2(7):534–47. https://doi.org/10.1021/accountsmr.1c00074.

    Article  CAS  Google Scholar 

  4. Li S, Zhang Y, Wang Q, Lin A, Wei H. Nanozyme-enabled analytical chemistry. Anal Chem. 2022;94(1):312–23. https://doi.org/10.1021/acs.analchem.1c04492.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Wang J, Liao J, Lin Y, Zheng C, Liu J. In situ fabrication of nanoceria with oxidase-like activity at neutral pH: mechanism and boosted bio-nanozyme cascades. ACS Appl Mater Interfaces. 2021;13(42):50236–45. https://doi.org/10.1021/acsami.1c14831.

    Article  CAS  Google Scholar 

  6. Chao D, Dong Q, Yu Z, Qi D, Li M, Xu L, et al. Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J Am Chem Soc. 2022;144(51):23438–47. https://doi.org/10.1021/jacs.2c09663.

    Article  CAS  PubMed  Google Scholar 

  7. Xu W, Song W, Kang Y, Jiao L, Wu Y, Chen Y, et al. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal Chem. 2021;93(37):12758–66. https://doi.org/10.1021/acs.analchem.1c02842.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang C, Chen C, Zhao D, Kang G, Liu F, Yang F, et al. Multienzyme cascades based on highly efficient metal-nitrogen-carbon nanozymes for construction of versatile bioassays. Anal Chem. 2022;94(8):3485–93. https://doi.org/10.1021/acs.analchem.1c04018.

    Article  CAS  PubMed  Google Scholar 

  9. Dong K, Xu C, Ren J, Qu X. Chiral nanozymes for enantioselective biological catalysis. Angew Chem Int Ed Engl. 2022;61(43): e202208757. https://doi.org/10.1002/anie.202208757.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.

    Article  CAS  Google Scholar 

  11. Chang J, Yu L, Hou T, Hu R, Li F. Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Anal Chem. 2023;95(9):4479–85. https://doi.org/10.1021/acs.analchem.2c05198.

    Article  CAS  Google Scholar 

  12. Wu Y, Huang T, Luo Y, Dai L, Wang M, Xia Z, et al. Zirconium-amino acid framework as a green phosphatase-like nanozyme for the selective detection of phosphate-containing drugs. Chem Commun (Camb). 2023;59(8):1098–101. https://doi.org/10.1039/d2cc06606h.

    Article  CAS  PubMed  Google Scholar 

  13. Liu H, Liu J. Self-limited phosphatase-mimicking CeO2 nanozymes. ChemNanoMat. 2020;6(6):947–52. https://doi.org/10.1002/cnma.202000132.

    Article  CAS  Google Scholar 

  14. Gao R, Ye N, Kou X, Shen Y, Yang H, Wu T, et al. Hierarchically mesoporous Ce-based MOFs with enhanced alkaline phosphatase-like activity for phosphorylated biomarker sensing. Chem Commun (Camb). 2022;58(91):12720–3. https://doi.org/10.1039/d2cc04895g.

    Article  CAS  PubMed  Google Scholar 

  15. Xiong Y, Su L, Ye F, Zhao S. Inhibition of NADP(H) supply by highly active phosphatase-like ceria nanozymes to boost oxidative stress and ferroptosis. Mater Today Chem. 2022; 23. https://doi.org/10.1016/j.mtchem.2021.100672.

  16. Dai L, Mao W, Hu L, Song J, Zhang Y, Huang T, et al. Ratiometric fluorescent sensing and imaging of intracellular pH by an AIE-active luminogen with intrinsic phosphatase-like catalytic activity. Dyes Pigments. 2022; 204. https://doi.org/10.1016/j.dyepig.2022.110436.

  17. Mao W, Dai L, Hu L, Song J, Huang T, Wang M. Dual-channel fluorescent imaging of reactive oxygen species in living cells based on Ce(III) modified quantum dots with oxidation triggered phosphatase-like activity. Sensor and Actuat B: Chem. 2022; 367. https://doi.org/10.1016/j.snb.2022.132178.

  18. Li S, Zhou Z, Tie Z, Wang B, Ye M, Du L, et al. Data-informed discovery of hydrolytic nanozymes. Nat Commun. 2022; 13 (1). https://doi.org/10.1038/s41467-022-28344-2.

  19. Park Y-G, Nam S-N, Jang M, Min Park C, Her N, Sohn J, et al. Boron nitride-based nanomaterials as adsorbents in water: a review. Sep Purif Technol. 2022; 288. https://doi.org/10.1016/j.seppur.2022.120637.

  20. Li M, Huang G, Chen X, Yin J, Zhang P, Yao Y, et al. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today. 2022; 44. https://doi.org/10.1016/j.nantod.2022.101486.

  21. Li X, Chen S, Liu Q, Luo Y, Sun X. Hexagonal boron nitride nanosheet as an effective nanoquencher for the fluorescence detection of microRNA. Chem Commun (Camb). 2021;57(65):8039–42. https://doi.org/10.1039/d1cc03011f.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi H, Fukuoka A. Hexagonal boron nitride for adsorption of saccharides. J Phys Chem C. 2017;121(32):17332–8. https://doi.org/10.1021/acs.jpcc.7b05077.

    Article  CAS  Google Scholar 

  23. Pan Y, Zheng H, Li G, Li Y, Jiang J, Chen J, et al. Antibiotic-like activity of atomic layer boron nitride for combating resistant bacteria. ACS Nano. 2022;16(5):7674–88. https://doi.org/10.1021/acsnano.1c11353.

    Article  CAS  PubMed  Google Scholar 

  24. Liu T, Li Y, He J, Zhang K, Hu Y, Chen X, et al. Few-layered boron nitride nanosheets as superior adsorbents for the rapid removal of lead ions from water. J Mater Sci. 2019;54(7):5366–80. https://doi.org/10.1007/s10853-018-03240-7.

    Article  CAS  Google Scholar 

  25. Vatanparast M, Shariatinia Z. Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: insights from DFT calculations and molecular dynamics simulations. J Mol Graph Model. 2019;89:50–9. https://doi.org/10.1016/j.jmgm.2019.02.012.

    Article  CAS  PubMed  Google Scholar 

  26. Karthikeyan P, Elanchezhiyan SS, Preethi J, Meenakshi S, Park CM. Mechanistic performance of polyaniline-substituted hexagonal boron nitride composite as a highly efficient adsorbent for the removal of phosphate, nitrate, and hexavalent chromium ions from an aqueous environment. Appl Surf Sci. 2020; 511. https://doi.org/10.1016/j.apsusc.2020.145543.

  27. Li Z, Wei W, Li H, Li S, Leng L, Zhang M, et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS Nano. 2021;15(6):10175–84. https://doi.org/10.1021/acsnano.1c02094.

    Article  CAS  PubMed  Google Scholar 

  28. Kong L, Jiao D, Wang Z, Liu Y, Shang Y, Yin L, et al. Single metal atom anchored on porous boron nitride nanosheet for efficient collaborative urea electrosynthesis: a computational study. Chem Eng J. 2023; 451. https://doi.org/10.1016/j.cej.2022.138885.

  29. Ding Y, Torres-Davila F, Khater A, Nash D, Blair R, Tetard L. Defect engineering in boron nitride for catalysis. MRS Commun. 2018;8(3):1236–43. https://doi.org/10.1557/mrc.2018.113.

    Article  CAS  Google Scholar 

  30. Zhang Y, Du H, Ma Y, Ji L, Guo H, Tian Z, et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019;12(4):919–24. https://doi.org/10.1007/s12274-019-2323-x.

    Article  CAS  Google Scholar 

  31. Chen H, Yang Z, Zhang Z, Chen Z, Chi M, Wang S, et al. Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation. Angew Chem Int Ed Engl. 2019;58(31):10626–30. https://doi.org/10.1002/anie.201904996.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Liu J, Mateti S, Zhang C, Zhang Y, Chen L, et al. Boron radicals identified as the source of the unexpected catalysis by boron nitride nanosheets. ACS Nano. 2019;13(2):1394–402. https://doi.org/10.1021/acsnano.8b06978.

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Jiang DE, Yang Z, Dai S. Engineering nanostructured interfaces of hexagonal boron nitride-based materials for enhanced catalysis. Acc Chem Res. 2023;56(1):52–65. https://doi.org/10.1021/acs.accounts.2c00564.

    Article  CAS  PubMed  Google Scholar 

  34. Ramakrishnam Raju MV, Harris SM, Pierre VC. Design and applications of metal-based molecular receptors and probes for inorganic phosphate. Chem Soc Rev. 2020;49(4):1090–108. https://doi.org/10.1039/c9cs00543a.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao CX, Zhang XP, Shu Y, Wang JH. Europium-pyridinedicarboxylate-adenine light-up fluorescence nanoprobes for selective detection of phosphate in biological fluids. ACS Appl Mater Interfaces. 2020;12(20):22593–600. https://doi.org/10.1021/acsami.0c04318.

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Fu F, Yang W, Ding L, Dong J, Yang Y, et al. A simple fluorescent probe for fast and sensitive detection of inorganic phosphate based on uranine@ZIF-8 composite. Sensors Actuat B: Chem. 2019; 301. https://doi.org/10.1016/j.snb.2019.127110.

  37. Yang L, Zhang Q, Han Y, Li H, Sun S, Xu Y. The selective deprotonation of carbon quantum dots for fluorescence detection of phosphate and visualization of latent fingerprints. Nanoscale. 2021;13(30):13057–64. https://doi.org/10.1039/d1nr02432a.

    Article  CAS  PubMed  Google Scholar 

  38. Wu Z, Yang H, Pan S, Liu H, Hu X. Fluorescence-scattering dual-signal response of carbon dots@ZIF-90 for phosphate ratiometric detection. ACS Sens. 2020;5(7):2211–20. https://doi.org/10.1021/acssensors.0c00853.

    Article  CAS  Google Scholar 

  39. Mashhadi Farahani S, Dadmehr M, Ali Karimi M, Korouzhdehi B, Amin Karimi M, Rajabian M. Fluorometric detection of phytase enzyme activity and phosphate ion based on gelatin supported silver nanoclusters. Food Chem. 2022;396: 133711. https://doi.org/10.1016/j.foodchem.2022.133711.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Chongqing Natural Science Foundation (cstc2020jcyj-msxmX0625 and cstc2021jcyj-msxmX0757) and the Chongqing Innovation Research Group Project (no. CXQT21015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianzhe Hu or Min Wang.

Ethics declarations

Declarations

The human urine samples were provided by healthy volunteers from Dr. Min Wang’s lab. The studies have been approved by the Ethics Committee at Chongqing University and have been performed in accordance with the ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 824 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., He, Y., Zhou, G. et al. Few-layered boron nitride nanosheet as a non-metallic phosphatase nanozyme and its application in human urine phosphorus detection. Anal Bioanal Chem (2023). https://doi.org/10.1007/s00216-023-05030-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-023-05030-w

Keywords

Navigation