Skip to main content
Log in

Tunable catalytic activity of FeWO4 nanomaterials for sensitive assays of pyrophosphate ion and alkaline phosphatase activity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alkaline phosphatase (ALP) activity and pyrophosphate ion (PPi) levels are remarkable for the human body functions such as signal transduction pathways and metabolism. Current quantitative methods mainly focus on developing complicated organic substrates or employing unstable metal ions as signal-regulated medium. Herein, we have developed a facile hydrothermal method for preparing FeWO4 nanomaterials with intrinsic peroxidase-like activity and further confirmed that such a catalytic activity could be significantly enhanced by adjusting the size and oxygen vacancy content. More encouragingly, PPi can easily inhibit the catalytic activity of FeWO4, whereas orthophosphate ions (Pi) cannot. Therefore, we constructed an FeWO4-based colorimetric assay for sensing PPi by means of the classical 3,3′,5,5′-tetramethylbenzidine-peroxidase chromogenic reaction. A facile and reliable ALP activity assay was also designed and developed because of the logical regulation of the peroxidase-like activity of FeWO4 through the ALP-catalyzed hydrolysis of PPi into Pi. Based on the clear mechanism and mimetic-enzyme FeWO4-catalyzed amplification, the sensing system exhibited excellent performance and was able to evaluate ALP activity in real serum samples and screen for potential ALP inhibitors. The proposed mimetic enzyme-involved colorimetric assay provides an alternative pathway, and FeWO4 nanomaterials with excellent performance have great potential for further biosensing and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao D, Ma X, Li N, Wang F, Chen C, Sun J. Chin J Anal Chem, 2021, 49: 1804–1815

    CAS  Google Scholar 

  2. Sun J, Zhao J, Bao X, Wang Q, Yang X. Anal Chem, 2018, 90: 6339–6345

    CAS  PubMed  Google Scholar 

  3. Shi D, Sun Y, Lin L, Shi C, Wang G, Zhang X. Analyst, 2016, 141: 5549–5554

    CAS  PubMed  Google Scholar 

  4. Lu D, Qin M, Zhao Y, Li H, Luo L, Ding C, Cheng P, Su M, Li H, Song Y, Li J. Small, 2023, 19: 2206461

    CAS  Google Scholar 

  5. Macrae MX, Blake S, Jiang X, Capone R, Estes DJ, Mayer M, Yang J. ACS Nano, 2009, 3: 3567–3580

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao D, Li J, Peng C, Zhu S, Sun J, Yang X. Anal Chem, 2019, 91: 2978–2984

    CAS  PubMed  Google Scholar 

  7. Pandey S, Sharma AK, Sharma KH, Nerthigan Y, Khan MS, Hang DR, Wu HF. Sens Actuat B-Chem, 2018, 254: 514–518

    CAS  Google Scholar 

  8. Ye K, Wang L, Song H, Li X, Niu X. J Mater Chem B, 2019, 7: 4794–4800

    CAS  PubMed  Google Scholar 

  9. Xi CY, Zhang M, Jiang L, Chen HY, Lv J, He Y, Hafez ME, Qian RC, Li DW. Sens Actuators B, 2022, 369

  10. Liu H, Li M, Xia Y, Ren X. ACS Appl Mater Interfaces, 2017, 9: 120–126

    CAS  PubMed  Google Scholar 

  11. Ruan C, Wang W, Gu B. Anal Chem, 2006, 78: 3379–3384

    CAS  PubMed  Google Scholar 

  12. Lin Z, Luo S, Xu D, Liu S, Wu N, Yao W, Zhang X, Zheng L, Lin X. Analyst, 2020, 145: 424–433

    CAS  PubMed  Google Scholar 

  13. Pathak RK, Tabbasum K, Rai A, Panda D, Rao CP. Anal Chem, 2012, 84: 5117–5123

    CAS  PubMed  Google Scholar 

  14. Bhowmik S, Ghosh BN, Marjomäki V, Rissanen K. J Am Chem Soc, 2014, 136: 5543–5546

    CAS  PubMed  Google Scholar 

  15. Wang W, Wu M, Liu H, Liu Q, Gao Y, Zhao B. Tetrahedron Lett, 2019, 60: 1631–1635

    CAS  Google Scholar 

  16. Anbu S, Paul A, Stasiuk GJ, Pombeiro AJL. Coord Chem Rev, 2021, 431: 213744

    CAS  Google Scholar 

  17. Lee DH, Kim SY, Hong JI. Angew Chem, 2004, 116: 4881–4884

    Google Scholar 

  18. Al-mashriqi HS, Zheng H, Qi S, Zhai H. J Mol Structure, 2021, 1242: 130755

    CAS  Google Scholar 

  19. Lee S, Yuen KKY, Jolliffe KA, Yoon J. Chem Soc Rev, 2015, 44: 1749–1762

    CAS  PubMed  Google Scholar 

  20. Yıldırım D, Gökçal B, Büber E, Kip Ç, Demir MC, Tuncel A. Chem Eng J, 2021, 403: 126357

    Google Scholar 

  21. Markel U, Sauer DF, Wittwer M, Schiffels J, Cui H, Davari MD, Kröckert KW, Herres-Pawlis S, Okuda J, Schwaneberg U. ACS Catal, 2021, 11: 5079–5087

    CAS  Google Scholar 

  22. Wang L, Ye K, Pan J, Song H, Li X, Niu X. Anal Methods, 2019, 11: 5472–5477

    CAS  Google Scholar 

  23. Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, Luo HQ. J Mater Chem B, 2018, 6: 2843–2850

    CAS  PubMed  Google Scholar 

  24. Wang C, Gao J, Cao Y, Tan H. Anal Chim Acta, 2018, 1004: 74–81

    CAS  PubMed  Google Scholar 

  25. Zhao Y, Li F, Li W, Li Y, Liu C, Zhao Z, Shan Y, Ji Y, Sun L. Angew Chem Int Ed, 2021, 60: 20331–20341

    CAS  Google Scholar 

  26. Bhosale R, Jain S, Vinod CP, Kumar S, Ogale S. ACS Appl Mater Interfaces, 2019, 11: 6174–6183

    CAS  PubMed  Google Scholar 

  27. Xiao Z, Peng C, Jiang X, Peng Y, Huang X, Guan G, Zhang W, Liu X, Qin Z, Hu J. Nanoscale, 2016, 8: 12917–12928

    CAS  PubMed  Google Scholar 

  28. Wang Z, Qian G, Yu T, Chen J, Shen F, Luo L, Zou Y, Yin S. Chem Eng J, 2022, 434: 134669

    CAS  Google Scholar 

  29. Lian J, Liu P, Liu Q. J Hazard Mater, 2022, 433: 128766

    CAS  PubMed  Google Scholar 

  30. Boudghene Stambouli H, Guenfoud F, Benomara A, Mokhtari M, Sönmez-Çelebi M. Reac Kinet Mech Cat, 2021, 133: 563–578

    CAS  Google Scholar 

  31. Irfan M, Zahid M, Tahir N, Yaseen M, Qazi U. Y, Javaid R, Shahid I. Int J Environ Sci Technol, 2022

  32. Yang Y, Logesh K, Mehrez S, Huynen I, Elbadawy I, Mohanavel V, Alamri S. Ceram Int, 2023, 49: 2130–2139

    CAS  Google Scholar 

  33. He GL, Chen MJ, Liu YQ, Li X, Liu YJ, Xu YH. Appl Surf Sci, 2015, 351: 474–479

    CAS  Google Scholar 

  34. Gao Q, Liu Z. Prog Nat Sci-Mater Int, 2017, 27: 556–560

    CAS  Google Scholar 

  35. Ojha DP, Karki HP, Song J, Kim HJ. Chem Phys Lett, 2018, 712: 83–88

    CAS  Google Scholar 

  36. Liao J, Chen L, Sun M, Lei B, Zeng X, Sun Y, Dong F. Chin JCatal, 2018, 39: 779–789

    CAS  Google Scholar 

  37. Schuler R, Bianchini F, Norby T, Fjellvåg H. ACS Appl Mater Interfaces, 2021, 13: 7416–7422

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Xiao C, Wang K, Li Y, Zhang G. Environ Sci Technol, 2019, 53: 11023–11030

    CAS  PubMed  Google Scholar 

  39. Wang H, Wang C, Cui X, Qin L, Ding R, Wang L, Liu Z, Zheng Z, Lv B. Appl Catal B-Environ, 2018, 221: 169–178

    CAS  Google Scholar 

  40. Ou G, Xu Y, Wen B, Lin R, Ge B, Tang Y, Liang Y, Yang C, Huang K, Zu D, Yu R, Chen W, Li J, Wu H, Liu LM, Li Y. Nat Commun, 2018, 9: 1302

    PubMed  PubMed Central  Google Scholar 

  41. Zhou YX, Yao HB, Zhang Q, Gong JY, Liu SJ, Yu SH. Inorg Chem, 2009, 48: 1082–1090

    CAS  PubMed  Google Scholar 

  42. Su L, Feng J, Zhou X, Ren C, Li H, Chen X. Anal Chem, 2012, 84: 5753–5758

    CAS  PubMed  Google Scholar 

  43. Liu S, Shu R, Ma J, Dou L, Zhang W, Wang S, Ji Y, Li Y, Xu J, Zhang D, Zhu M, Song Y, Wang J. Chem Eng J, 2022, 446: 137382

    CAS  Google Scholar 

  44. Zhang C, Ni P, Wang B, Liu W, Jiang Y, Chen C, Sun J, Lu Y. Chin Chem Lett, 2022, 33: 757–761

    CAS  Google Scholar 

  45. Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X. Biomaterials, 2017, 113: 145–157

    CAS  PubMed  Google Scholar 

  46. Yang J, Yao H, Guo Y, Yang B, Shi J. Angew Chem Int Ed, 2022, 61: e202200480

    CAS  Google Scholar 

  47. Zhou X, Wang M, Wang M, Su X. ACS Appl Nano Mater, 2021, 4: 7888–7896

    CAS  Google Scholar 

  48. Shi W, Li T, Chu N, Liu X, He M, Bui B, Chen M, Chen W. Mater Sci Eng-C, 2021, 129: 112404

    CAS  Google Scholar 

  49. Wu D, Zhao Q, Sun J, Yang X. Chin Chem Lett, 2023, 34: 107672

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21974132, 22034006, 21721003) and the Open Project of State Key Laboratory of Supramolecular Structure and Materials (sklssm2023021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Sun or Xiurong Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1583_MOESM1_ESM.pdf

Tunable catalytic activity of FeWO4 nanomaterials for sensitive assays of pyrophosphate ion and alkaline phosphatase activity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Chen, J., Zhang, M. et al. Tunable catalytic activity of FeWO4 nanomaterials for sensitive assays of pyrophosphate ion and alkaline phosphatase activity. Sci. China Chem. 66, 1860–1868 (2023). https://doi.org/10.1007/s11426-023-1583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1583-8

Keywords

Navigation