Skip to main content
Log in

Nitrogen and Sulfur Co-doped Carbon Quantum Dots for Detecting Fe3+, Ascorbic Acid and Alkaline Phosphatase Activities

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A method utilizing nitrogen-doped and sulfur-doped carbon quantum dots (N, S-CQDs) as fluorescent probes for the rapid detection of Fe3+, L-ascorbic acid (AA), and alkaline phosphatase (ALP) was presented. The fluorescence intensity of N, S-CQDs nanoprobes can be rapidly and efficiently quenched by Fe3+ and based on the fluorescence “turn off-on” characteristic of N, S-CQDs nanoprobes, the fluorescence signals of the N, S-CQDs/Fe3+can be recovered after the addition of AA. By coupling a fluorescent nanoprobe to an enzyme and L-ascorbic acid-2-phosphate (AA2P), a green, simple, rapid and effective fluorescent analytical method for the determination of ALP was developed. The prepared N, S-CQDs showed high sensitivity and selectivity to Fe3+, AA and ALP with the detection limit of 0.42 μM, 12.7 nM and 0.017 U·L−1 and their optimal concentration ranges were10—600 µM, 10—200 μM, 0.18—54 U·L−1, respectively. The fluorescence quantum yield of N, S-CQDs (0.2 mg·mL−1) at 393 nm excitation wavelength was 4.41%. Additionally, the fluorescent nanoprobes have been employed to successfully measure ALP in serum samples. It is expected that the established method may offer a new approach for biomolecular detection in clinical diagnosis and pharmaceutical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Sawicki KT, De Jesus A, Ardehali H (2023) Iron metabolism in cardiovascular disease: physiology, mechanisms, and therapeutic targets. Cir Res 132:379–396. https://doi.org/10.1161/CIRCRESAHA.122.321667

    Article  CAS  Google Scholar 

  2. Senol N, Sahin M (2023) Protective Effect of Juglone (5-Hydroxy-1,4-naphthoquinone) against Iron- and Zinc-Induced Liver and Kidney Damage. Appl Sci 13. https://doi.org/10.3390/app13042203

  3. Huang QT, Li YL (2022) Research Progress of Abnormal Iron Metabolism and Tumor of Lymphatic Hematopoiesis System --Review. Zhongguo shi yan xue ye xue za zhi 30:1277–1280. https://doi.org/10.19746/j.cnki.issn.1009-2137.2022.04.049

  4. Kermeur N, Pedrot M, Cabello-Hurtado F (2023) Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling, Methods in molecular biology (Clifton, N.J.) 2642:49–81. https://doi.org/10.1007/978-1-0716-3044-0_3

  5. Lazarowski AJ, Vitale AA, Auzmendi JA, Pomilio AB (2022) Iron: from normal homeostasis to death by ferroptosis. Acta Bioquimica Clinica Latinoamericana 56:491–513

    Google Scholar 

  6. Tabur S, Bayraktar NB, Ozmen S (2022) L-Ascorbic acid modulates the cytotoxic and genotoxic effects of salinity in barley meristem cells by regulating mitotic activity and chromosomal aberrations. Caryologia 75:19–29. https://doi.org/10.36253/caryologia-1791

  7. Mokrzynski K, Krzysztynska-Kuleta O, Sarna M, Wnuk D, Wojtala M, Sarna T (2022) Skin phototoxicity of ambient particulate matter mitigated by the protective effects of ascorbic acid and resveratrol. FEBS Open Bio 12:155–155

    Google Scholar 

  8. Kola A, Nencioni F, Valensin D (2023) Bioinorganic chemistry of micronutrients related to alzheimer's and parkinson's diseases. Molecules 28. https://doi.org/10.3390/molecules28145467

  9. Alhusaini AM, Fadda LM, Alsharafi H, Alshamary AF, Hasan IH (2022) L-Ascorbic Acid and Curcumin Prevents Brain Damage Induced via Lead Acetate in Rats: Possible Mechanisms. Dev Neurosci 44:59–66. https://doi.org/10.1159/000521619

    Article  CAS  PubMed  Google Scholar 

  10. Samie KA, Dayer D, Eshkiki ZS (2023) Human Colon Cancer HT29 Cell Line Treatment with High-Dose L-Ascorbic Acid Results to Reduced Angiogenic Proteins Expression and Elevated Pro-apoptotic Proteins Expression. Curr Mol Med 23:470–478. https://doi.org/10.2174/1566524022666220616141725

    Article  CAS  PubMed  Google Scholar 

  11. Marsalka A, Kalnaityte A, Bieksa T, Bagdonas S (2022) The combined effects of ascorbic acid and bovine serum albumin on phototransformations of hematoporphyrin derivative in aqueous medium: absorption and epr spectroscopy study, lithuanian journal of physics 62:58–71

  12. Long Y, Yi C, Wu R, Zhang Y, Zhang B, Shi X, Zhang X, Zha Z (2023) Biodistribution and radiation dosimetry in cancer patients of the ascorbic acid analogue 6-Deoxy-6-[18F] fluoro-L-ascorbic acid PET imaging: first-in-human study. Eur J Nucl Med Mol Imaging 50:3072–3083. https://doi.org/10.1007/s00259-023-06262-9

    Article  CAS  PubMed  Google Scholar 

  13. Kumar P, Sarkar A, Jain P (2022) Green synthesis of reduced graphene oxide nanosheet by using L-ascorbic acid and study of its cytotoxicity on human cervical Cancer Cell Line. J Polym Mater 39:121–135. https://doi.org/10.32381/JPM.2022.39.1-2.8

  14. Zhang Z, Qin S, Wang Y, Liang H, Wang R, Li F (2023) L-ascorbic acid could ameliorate the damage of myocardial microvascular endothelial cell caused by hypoxia-reoxygenation via targeting HMGB1. J Bioenerg Biomembr. https://doi.org/10.1007/s10863-023-09962-x

    Article  PubMed  Google Scholar 

  15. Makris K, Mousa C, Cavalier E (2023) Alkaline Phosphatases: Biochemistry Functions, and Measurement. Calcif Tissue Int 112:233–242. https://doi.org/10.1007/s00223-022-01048-x

  16. Lei JS, Kang J, Liu JF, Wang GN (2022) A Novel Electrochemical Sensing Strategy Based on Poly (3, 4-ethylenedioxythiophene): Polystyrene Sulfonate, AuNPs, and Ag+ for Highly Sensitive Detection of Alkaline Phosphatase. Nanomaterials 12. https://doi.org/10.3390/nano12193392

  17. Dharmarpandi G, Mohammed B, Al-Bayati M, Anees M, Sleem M, Alhussain EM, Naguib T (2023) Elevated alkaline phosphatase caused by isolated bone marrow breast cancer metastasis. Am J Med Sci 365:S114–S115

    Google Scholar 

  18. Mishra S, Mishra D, Mahajan B, Mantan M, Khan AM (2023) Effect of daily vitamin D supplementation on serum vitamin D levels in children with epilepsy receiving sodium valproate monotherapy: a randomized, controlled trial. Indian J Pediatr 90:450–456. https://doi.org/10.1007/s12098-022-04225-w

  19. Haarhaus M, Cianciolo G, Barbuto S, La Manna G, Gasperoni L, Tripepi G, Plebani M, Fusaro M, Magnusson P (2022) Alkaline phosphatase: an old friend as treatment target for cardiovascular and mineral bone disorders in chronic kidney disease. Nutrients 14. https://doi.org/10.3390/nu14102124

  20. Tse G, Zhang Q, Adhikari G, Cheung B, Basit J, Zhou J, Wong WT, Liu T, Chou O, Chung CT, Bin Waleed K, Lee S, Wong I (2023) Alkaline phosphatase variability and heart failure in type 2 diabetes mellitus: the hong kong diabetes study. Heart 109:A234–A235. https://doi.org/10.1136/heartjnl-2023-BCS.199

    Article  Google Scholar 

  21. Diamantis D, Tsiailanis AD, Papaemmanouil C, Nika MC, Kanaki Z, Grdadolnik SG, Babic A, Tzakos EP, Fournier I, Salzet M, Kushwaha PP, Thomaidis NS, Rampias T, Shankar E, Karakurt S, Gupta S, Tzakos AG (2023) Development of a novel apigenin prodrug programmed for alkaline-phosphatase instructed self-inhibition to combat cancer. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2247083

    Article  PubMed  Google Scholar 

  22. Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F (2022) Turn-off fluorescence of nitrogen and sulfur carbon quantum dots as effective fluorescent probes for determination of imatinib. Application to biological fluids, Spectrochimica acta. Part A, Molecular and Miomolecular Spectroscopy 272:120954. https://doi.org/10.1016/j.saa.2022.120954

  23. Yang Z, Xu T, Zhang X, Li H, Jia X, Zhao S, Yang Z, Liu X (2022) Nitrogen-doped carbon quantum dots as fluorescent nanosensor for selective determination and cellular imaging of ClO-. Spectrochim Acta A Mol Biomol Spectrosc 271. https://doi.org/10.1016/j.saa.2022.120941

  24. Du Y, Li Y, Liu Y, Liu N, Cheng Y, Shi Q, Liu X, Tao Z, Guo Y, Zhang J, Askaria N, Li H (2023) Stalk-derived carbon dots as nanosensors for Fe3+ ions detection and biological cell imaging. Front Bioeng Biotechnol 11. https://doi.org/10.3389/fbioe.2023.1187632

  25. Abd Elhaleem SM, Shalan S, Belal F, Elsebaei F (2022) Insights for applying N,S-doped carbon dots as a fluorescent nanoprobe for estimation of some nitro-calcium channel blockers. R Soc Open Sci 9:220609. https://doi.org/10.1098/rsos.220609

  26. Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F (2022) Utilization of N,S-doped carbon dots as a fluorescent nanosensor for determination of cromolyn based on inner filter effect: application to aqueous humour. Luminescence : the journal of biological and chemical luminescence 37:713–721. https://doi.org/10.1002/bio.4212

  27. Liao S, Huang X, Yang H, Chen X (2018) Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal Bioanal Chem 410:7701–7710. https://doi.org/10.1007/s00216-018-1387-x

    Article  CAS  PubMed  Google Scholar 

  28. Zhao N, Wang Y, Hou S, Zhao L (2020) Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Mikrochim Acta 187:351. https://doi.org/10.1007/s00604-020-04328-1

    Article  CAS  PubMed  Google Scholar 

  29. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  30. R. Fan, J.X. Xiang, P.P. Zhou, H. Mei, Y.Y. Li, H.L. Wang, X.D. Liu, X.D. Wang, Reuse of waste Myrica rubra for green synthesis of nitrogen-doped carbon dots as an "on-off-on" fluorescent probe for Fe3+ and ascorbic acid detection, Ecotoxicology and Environmental Safety, 233 (2022). https://doi.org/10.1016/j.ecoenv.2022.113350

  31. Zhu J, Sun S, Jiang K, Wang Y, Liu W, Lin H (2017) A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots. Biosens Bioelectron 97:150–156. https://doi.org/10.1016/j.bios.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  32. Pang S, Liu S (2020) Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal Chim Acta 1105:155–161. https://doi.org/10.1016/j.aca.2020.01.033

    Article  CAS  PubMed  Google Scholar 

  33. Huangfu X, Shen Y, Yang A, Liu L, Luo W, Zhao W (2020) Synthesis of water soluble CuGaS2/ZnS quantum dots for ultrasensitive fluorescent detection of alkaline phosphatase based on inner filter effect. Colloids and Surfaces B-biointerfaces 191. https://doi.org/10.1016/j.colsurfb.2020.110984

  34. Xiao Q, Mu PP, Ning G, Zhang WQ, Li B, Huang S (2023) A ratiometric fluorescent probe for simultaneous detection of L-ascorbic acid and alkaline phosphatase activity based on red carbon dots/polydopamine nanocomposite. Talanta 264. https://doi.org/10.1016/j.talanta.2023.124724

  35. Tang M, Zhu B, Wang Y, Wu H, Chai F, Qu F, Su Z (2019) Nitrogen- and sulfur-doped carbon dots as peroxidase mimetics: colorimetric determination of hydrogen peroxide and glutathione, and fluorimetric determination of lead(II). Mikrochim Acta 186:604. https://doi.org/10.1007/s00604-019-3710-4

    Article  CAS  PubMed  Google Scholar 

  36. Yan JY, Zhou YH, Shen JL, Zhang NN, Liu X (2023) Facile synthesis of S, N-co-doped carbon dots for bio-imaging, Fe3+detection and DFT calculation. Spectrochim Acta A Mol Biomol Spectrosc 302. https://doi.org/10.1016/j.saa.2023.123105

  37. Sun LL, Liu YY, Wang YS, Xu JY, Xiong Z, Zhao XH, Xia YZ (2021) Nitrogen and sulfur Co-doped carbon dots as selective and visual sensors for monitoring cobalt ions. Opt Mater 112. https://doi.org/10.1016/j.optmat.2020.110787

  38. Saraswat V, Yadav M (2021) Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor. Colloids Surf A Physicochem Eng Asp 627. https://doi.org/10.1016/j.colsurfa.2021.127172

  39. Rajar K, Alveroglu E (2020) CNTs based Water soluble fluorescent sensor for selective detection of Fe3+ ion. Mater Res Bull 124. https://doi.org/10.1016/j.materresbull.2019.110748

  40. Mohandoss S, Ahmad N, Khan MR, Velu KS, Kalaiselvi K, Palanisamy S, You SG, Lee  YR (2023) Multicolor emission-based nitrogen, sulfur and boron co-doped photoluminescent carbon dots for sequential sensing of Fe3+ and cysteine: RGB color sensor and live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 302. https://doi.org/10.1016/j.saa.2023.123040

  41. Jin XL, Bai HY, Ma YT, Li YL, Chen WX (2023) Green synthesis of biomass-based fluorescent carbon dots for the detection and adsorption of Fe (III). Chemistryselect 8. https://doi.org/10.1002/slct.202204852

  42. Tang FR, Feng ST, Wu FS, Zhang J (2023) One-step fabrication of biomass carbon dots for highly selective detection of Fe3+. Chem Pap. https://doi.org/10.1007/s11696-023-03153-z

    Article  Google Scholar 

  43. Chen J, Wang YT, Wang L, Liu MJ, Fang LL, Chu P, Gao CZ, Chen DP, Ren DZ, Zhang JB (2023) Multi-applications of carbon dots and polydopamine-coated carbon dots for Fe3+ detection, bioimaging, dopamine assay and photothermal therapy. Discover Nano 18. https://doi.org/10.1186/s11671-023-03809-5

  44. Wang Z, Chen D, Gu B, Gao B, Liu Z, Yang Y, Guo Q, Zheng X, Wang G (2020) Yellow emissive nitrogen-doped graphene quantum dots as a label-free fluorescent probe for Fe3+ sensing and bioimaging. Diam Relat Mater 104. https://doi.org/10.1016/j.diamond.2020.107749

  45. Li C, Sun Q, Zhao Q, Cheng X (2020) Highly selective ratiometric fluorescent probes for the detection of Fe3+ and its application in living cells. Spectrochim Acta A Mol Biomol Spectrosc 228. https://doi.org/10.1016/j.saa.2019.117720

  46. Chen L, Wul C, Du P, Feng X, Wu P, Cai C (2017) Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe3+ ions in water samples. Talanta 164:100–109. https://doi.org/10.1016/j.talanta.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  47. Wang Q-B, Zhang C-J, Yu H, Zhang X, Lu Q, Yao J-S, Zhao H (2020) The sensitive “Turn-on” fluorescence platform of ascorbic acid based on conjugated polymer nanoparticles. Anal Chim Acta 1097:153–160. https://doi.org/10.1016/j.aca.2019.10.076

    Article  CAS  PubMed  Google Scholar 

  48. Xu HB, Zhou SH, Li MY, Zhang PR, Wang ZH, Tian YM, Wang XQ (2022) Preparation of biomass-waste-derived carbon dots from apricot shell for highly sensitive and selective detection of ascorbic acid. Chin J Anal Chem 50. https://doi.org/10.1016/j.cjac.2022.100168

  49. Li JX, Liu MT, Lu CF, Xu YJ, Cao QE, Zhou CH (2023) Microwave-assisted synthesis of boron and nitrogen-doped carbon dots for detection of ascorbic acid. Chin J Anal Chem 51:211–218. https://doi.org/10.19756/j.issn.0253-3820.221314

  50. Xu OW, Wan SY, Yang J, Song HY, Xia J, Dong LZ, Zhu XS (2023) Ionic liquid-functionalized carbon dots with positive surface charge for selective detection of ascorbic acid. Carbon Letters 33:387–395. https://doi.org/10.1007/s42823-022-00427-6

    Article  Google Scholar 

  51. Won S, Kim J (2022) The detection of Fe (III) and ascorbic acid by fluorescence quenching and recovery of carbon dots prepared from coffee waste. Korean J Chem Eng 39:2826–2833. https://doi.org/10.1007/s11814-022-1138-8

    Article  CAS  Google Scholar 

  52. Liu Y, Wu P, Wu X, Ma C, Luo S, Xu M, Li W, Liu S (2020) Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta 210. https://doi.org/10.1016/j.talanta.2019.120649

  53. Niu W-J, Shan D, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon 96:1034–1042. https://doi.org/10.1016/j.carbon.2015.10.051

    Article  CAS  Google Scholar 

  54. Yang Y-X, Fang Y-Z, Tian J-X, Xiao Q, Kong X-J (2020) Fluorescent polydopamine nanoparticles as a nanosensor for the sequential detection of mercury ions andl-ascorbic acid based on a coordination effect and redox reaction. RSC Adv 10:28164–28170. https://doi.org/10.1039/d0ra02031a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lv X, Man H, Dong L, Huang J, Wang X (2020) Preparation of highly crystalline nitrogen-doped carbon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chem 326. https://doi.org/10.1016/j.foodchem.2020.126935

  56. He SB, Balasubramanian P, Hu AL, Zheng XQ, Lin MT, Xiao MX, Peng HP, Deng HH, Chen W (2020) One-pot cascade catalysis at neutral pH driven by CuO tandem nanozyme for ascorbic acid and alkaline phosphatase detection. Sensors and Actuators B-Chemical 321. https://doi.org/10.1016/j.snb.2020.128511

  57. Wang S, Han BB, Chen MS, Han YQ, Liu JF, Wang GN (2023) Construction of bifunctional carbon dots based fluorescent/colorimetric/ smartphone-assisted multi-signal strategy for monitoring alkaline phosphatase activity. Materials & Design 232. https://doi.org/10.1016/j.matdes.2023.112172

  58. Li PH, Liang N, Liu C, Xia L, Qu FL, Song ZL, Kong RM (2022) Silver ion-regulated ratiometric fluorescence assay for alkaline phosphatase detection based on carbon dots and o-phenylenediamine. Spectrochim Acta A Mol Biomol Spectrosc 282. https://doi.org/10.1016/j.saa.2022.121682

  59. Wu T, Hou W, Ma Z, Liu M, Liu X, Zhang Y, Yao S (2019) Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Microchimica Acta 186. https://doi.org/10.1007/s00604-018-3224-5

  60. Liu SG, Han L, Li N, Fan YZ, Yang YZ, Li NB, Luo HQ (2019) A ratiometric fluorescent strategy for alkaline phosphatase activity assay based on g-C3N4/CoOOH nanohybrid via target-triggered competitive redox reaction. Sens Actuators b Chem 283:515–523. https://doi.org/10.1016/j.snb.2018.12.052

  61. Yang Q, Li C, Li J, Arabi M, Wang X, Peng H, Xiong H, Choo J, Chen L (2020) Multi-emitting fluorescence sensor of MnO2-OPD-QD for the multiplex and visual detection of ascorbic acid and alkaline phosphatase. J Mater Chem C 8:5554–5561. https://doi.org/10.1039/c9tc07072a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Associate professor Yang Wang, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, P. R. China; Shandong Lukang Pharmaceutical Co., Ltd., Jining, Shandong Province, P. R. China.

Funding

This work was supported by the Middle-aged Backbone Personnel Training Program of Shenyang Pharmaceutical University (ZQN2016011) and Science and Technology Department of Liaoning Province(2019-ZD-0450).

Author information

Authors and Affiliations

Authors

Contributions

RNW: Conceptualization, Methodology, Data curation, Writing-original draft. YW and NZ: Formal analysis, Investigation, Software, Data curation. HQZ and XCY: Writing-review & Editing, Supervision. Longshan Zhao: Writing-review & Editing, Project administration.All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yang Wang or Longshan Zhao.

Ethics declarations

Ethical Approval

The human serum samples used in this study were provided by the First Affiliated Hospital of Jilin University and were approved by the Ethics Committee.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, Y., Zhao, N. et al. Nitrogen and Sulfur Co-doped Carbon Quantum Dots for Detecting Fe3+, Ascorbic Acid and Alkaline Phosphatase Activities. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03539-y

Keywords

Navigation