Skip to main content
Log in

High-throughput analysis of lipidomic phenotypes of methicillin-resistant Staphylococcus aureus by coupling in situ 96-well cultivation and HILIC-ion mobility-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is a major threat to human health as resistant pathogens spread globally, and the development of new antimicrobials is slow. Since many antimicrobials function by targeting cell wall and membrane components, high-throughput lipidomics for bacterial phenotyping is of high interest for researchers to unveil lipid-mediated pathways when dealing with a large number of lab-selected or clinical strains. However, current practice for lipidomic analysis requires the cultivation of bacteria on a large scale, which does not replicate the growth conditions for high-throughput bioassays that are normally carried out in 96-well plates, such as susceptibility tests, growth curve measurements, and biofilm quantitation. Analysis of bacteria grown under the same condition as other bioassays would better inform the differences in susceptibility and other biological metrics. In this work, a high-throughput method for cultivation and lipidomic analysis of antimicrobial-resistant bacteria was developed for standard 96-well plates exemplified by methicillin-resistant Staphylococcus aureus (MRSA). By combining a 30-mm liquid chromatography (LC) column with ion mobility (IM) separation, elution time could be dramatically shortened to 3.6 min for a single LC run without losing major lipid features. Peak capacity was largely rescued by the addition of the IM dimension. Through multi-linear calibration, the deviation of retention time can be limited to within 5%, making database-based automatic lipid identification feasible. This high-throughput method was further validated by characterizing the lipidomic phenotypes of antimicrobial-resistant mutants derived from the MRSA strain, W308, grown in a 96-well plate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    Article  Google Scholar 

  3. Khan A, Davlieva M, Panesso D, Rincon S, Miller WR, Diaz L, Reyes J, Cruz MR, Pemberton O, Nguyen AH, Siegel SD, Planet PJ, Narechania A, Latorre M, Rios R, Singh KV, Ton-That H, Garsin DA, Tran TT, Shamoo Y, Arias CA. Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis. Proc Natl Acad Sci U S A. 2019;116:26925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang JH, Bhuiyan MS, Shen HH, Cameron DR, Rupasinghe TWT, Wu CM, Le Brun AP, Kostoulias X, Domene C, Fulcher AJ, McConville MJ, Howden BP, Lieschke GJ, Peleg AY. Antibiotic resistance and host immune evasion in Staphylococcus aureus mediated by a metabolic adaptation. Proc Natl Acad Sci U S A. 2019;116:3722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hines KM, Shen T, Ashford NK, Waalkes A, Penewit K, Holmes EA, McLean K, Salipante SJ, Werth BJ, Xu L. Occurrence of cross-resistance and beta-lactam seesaw effect in glycopeptide-, lipopeptide- and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J Antimicrob Chemother. 2020;75:1182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci. 2013;1277:139–58.

    Article  CAS  PubMed  Google Scholar 

  7. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L. Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere. 2017;2:e00492-00417.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hewelt-Belka W, Nakonieczna J, Belka M, Baczek T, Namiesnik J, Kot-Wasik A. Untargeted lipidomics reveals differences in the lipid pattern among clinical isolates of Staphylococcus aureus resistant and sensitive to antibiotics. J Proteome Res. 2016;15:914–22.

    Article  CAS  PubMed  Google Scholar 

  9. Lee TH, Hofferek V, Separovic F, Reid GE, Aguilar MI. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol. 2019;52:85–92.

    Article  CAS  PubMed  Google Scholar 

  10. Lisa M, Holcapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography-mass spectrometry. Anal Chem. 2015;87:7187–95.

    Article  CAS  PubMed  Google Scholar 

  11. Quehenberger O, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51:3299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24:367–412.

    Article  CAS  PubMed  Google Scholar 

  13. Schwudke D, Liebisch G, Herzog R, Schmitz G, Shevchenko A. Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol. 2007;433:175–91.

    Article  CAS  PubMed  Google Scholar 

  14. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 2005;36:207–24.

    Article  CAS  PubMed  Google Scholar 

  15. Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol. 2007;432:21–57.

    Article  CAS  PubMed  Google Scholar 

  16. Hu CF, Duan Q, Han XL. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics. Proteomics. 2020;20:e1900070.

  17. Eggers LF, Schwudke D. Shotgun lipidomics approach for clinical samples. In: Giera M (ed) Clinical Metabolomics: Methods and Protocols. Springer New York, New York, NY, pp 163-174. 2018. https://doi.org/10.1007/978-1-4939-7592-1_12.

  18. Kofeler HC, Ahrends R, Baker ES, Ekroos K, Han XL, Hoffmann N, Holcapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res. 2021;62:100138.

  19. Hines KM, May JC, McLean JA, Xu L. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry. Anal Chem. 2016;88:7329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lisa M, Cifkova E, Khalikova M, Ovcacikova M, Holcapek M. Lipidomic analysis of biological samples: comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J Chromatogr A. 2017;1525:96–108.

    Article  CAS  PubMed  Google Scholar 

  21. Kim HI, Kim H, Pang ES, Ryu EK, Beegle LW, Loo JA, Goddard WA, Kanik I. Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry. Anal Chem. 2009;81:8289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson SN, Ugarov M, Post JD, Egan T, Langlais D, Schultz JA, Woods AS. A study of phospholipids by ion mobility TOFMS. J Am Soc Mass Spectrom. 2008;19:1655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kliman M, May JC, McLean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta, Mol Cell Biol Lipids. 2011;1811:935–45.

    Article  CAS  Google Scholar 

  24. May JC, McLean JA. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem. 2015;87:1422–36.

    Article  CAS  PubMed  Google Scholar 

  25. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem. 2014;86:2107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hines K, Herron J, Xu L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. J Lipid Res. 2017;58:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hines KM, Ross DH, Davidson KL, Bush MF, Xu L. Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Anal Chem. 2017;89:9023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019;30:2185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Picache JA, Rose BS, Balinski A, Leaptrot KL, Sherrod SD, May JC, McLean JA. Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci. 2019;10:983–93.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci. 2017;8:7724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross DH, Cho JH, Xu L. Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections. Anal Chem. 2020;92:4548–57.

    Article  CAS  PubMed  Google Scholar 

  32. Davidson KL, Bush MF. Effects of drift gas selection on the ambient-temperature, ion mobility mass spectrometry analysis of amino acids. Anal Chem. 2017;89:2017–23.

    Article  CAS  PubMed  Google Scholar 

  33. Li A, Hines KM, Xu L. Lipidomics by HILIC-ion mobility-mass spectrometry. Methods Mol Biol. 2020;2084:119–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Griffith KL, Wolf RE. Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun. 2002;290:397–402.

    Article  CAS  PubMed  Google Scholar 

  35. Hazan R, Que YA, Maura D, Rahme LG. A method for high throughput determination of viable bacteria cell counts in 96-well plates. Bmc Microbiol. 2012;12:259.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kensy F, Zang E, Faulhammer C, Tan RK, Buchs J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Factories. 2009;8:31.

    Article  Google Scholar 

  37. Musken M, Di Fiore S, Romling U, Haussler S. A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc. 2010;5:1460–9.

    Article  PubMed  Google Scholar 

  38. Hines KM, Alvarado G, Chen X, Gatto C, Pokorny A, Alonzo F 3rd, Wilkinson BJ, Xu L. Lipidomic and ultrastructural characterization of the cell envelope of Staphylococcus aureus grown in the presence of human serum. mSphere. 2020;5:e00339-00320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atolia E, Cesar S, Arjes HA, Rajendram M, Shi H, Knapp BD, Khare S, Aranda-Diaz A, Lenski RE, Huang KC. Environmental and physiological factors affecting high-throughput measurements of bacterial growth. mBio. 2020;11:e01378-01320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Werth BJ, Ashford NK, Penewit K, Waalkes A, Holmes EA, Ross DH, Shen T, Hines KM, Salipante SJ, Xu L. Dalbavancin exposure in vitro selects for dalbavancin-non-susceptible and vancomycin-intermediate strains of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2021;27:910.e911-910.e918.

    Article  Google Scholar 

  41. Ruotolo BT, McLean JA, Gillig KJ, Russell DH. Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides. J Mass Spectrom. 2004;39:361–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ruotolo BT, Gillig KJ, Stone EG, Russell DH. Peak capacity of ion mobility mass spectrometry: separation of peptides in helium buffer gas. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;782:385–92.

    Article  CAS  PubMed  Google Scholar 

  43. Ross DH, Cho JH, Zhang R, Hines KM, Xu L. LiPydomics: a python package for comprehensive prediction of lipid collision cross sections and retention times and analysis of ion mobility-mass spectrometry-based lipidomics data. Anal Chem. 2020;92:14967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ulmer CZ, Koelmel JP, Ragland JM, Garrett TJ, Bowden JA. LipidPioneer : a comprehensive user-generated exact mass template for lipidomics. J Am Soc Mass Spectrom. 2017;28:562–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colmsjo AL, Ericsson MW. Assessment of the height equivalent to a theoretical plate in liquid-chromatography. J Chromatogr. 1987;398:63–71.

    Article  Google Scholar 

  46. Lundanes E, Lo R, Greibrokk T. Chromatography: basic principles, sample preparations and related methods. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014.

    Google Scholar 

  47. Dubrac S, Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol. 2004;186:1175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dubrac S, Boneca IG, Poupel O, Msadek T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol. 2007;189:8257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Howden BP, McEvoy CR, Allen DL, Chua K, Gao W, Harrison PF, Bell J, Coombs G, Bennett-Wood V, Porter JL, Robins-Browne R, Davies JK, Seemann T, Stinear TP. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog. 2011;7: e1002359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gries CM, Bose JL, Nuxoll AS, Fey PD, Bayles KW. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Mol Microbiol. 2013;89:760–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheung A, Duclos B. Stp1 and Stk1: the Yin and Yang of vancomycin sensitivity and virulence in vancomycin-intermediate Staphylococcus aureus strains. J Infect Dis. 2012;205:1625–7.

    Article  CAS  PubMed  Google Scholar 

  52. Cameron DR, Ward DV, Kostoulias X, Howden BP, Moellering RC Jr, Eliopoulos GM, Peleg AY. Serine/threonine phosphatase Stp1 contributes to reduced susceptibility to vancomycin and virulence in Staphylococcus aureus. J Infect Dis. 2012;205:1677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Libby EA, Goss LA, Dworkin J. The eukaryotic-like Ser/Thr kinase PrkC regulates the essential WalRK two-component system in Bacillus subtilis. PLoS Genet. 2015;11: e1005275.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R01AI136979.

Author information

Authors and Affiliations

Authors

Contributions

L. Xu and R. Zhang contributed to the study conception and design. Material preparation, data collection, and analysis were performed by R. Zhang, N.K. Ashford, A. Li, and D.H. Ross. The first draft of the manuscript was written by R. Zhang with contributions from L. Xu and B.J. Werth. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Libin Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 407 KB)

Supplementary file2 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ashford, N.K., Li, A. et al. High-throughput analysis of lipidomic phenotypes of methicillin-resistant Staphylococcus aureus by coupling in situ 96-well cultivation and HILIC-ion mobility-mass spectrometry. Anal Bioanal Chem 415, 6191–6199 (2023). https://doi.org/10.1007/s00216-023-04890-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04890-6

Keywords

Navigation