Skip to main content
Log in

Effect of perylene assembly shapes on photoelectrochemical properties and ultrasensitive biosensing behaviors toward dopamine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a photoelectrochemical (PEC) sensor based on perylene diimide derivatives (PDIs) was developed for the ultrasensitive quantification of dopamine (DA). PDIs were able to form self-assembled semiconductor nanostructures by strong π-π stacking, suitable for photoactive substances. Moreover, the shape of the PDI significantly affected the PEC properties of these nanostructures. The results showed that amino PDI with two-dimensional (2D) wrinkled layered nanostructures exhibited superior PEC properties relative to one-dimensional (1D) nanorods and fiber-based nanostructures (methyl and carboxyl PDIs). Based on these results, a mechanism for PEC sensor action was then proposed. The presence of 2D amino-PDI resulted in accelerated charge separation and transport. Furthermore, dopamine acted as effective electron donor to cause an increase in photocurrent. The as-obtained sensor was then used to detect small molecules like DA. A blue light optimized sensor at an applied potential of 0.7 V showed a detection limit of 1.67 nM with a wide linear range of 5 nM to 10 μM. On the other hand, the sensor presented acceptable reliability in determining DA in real samples. A recovery rate between 97.99 and 101.0% was obtained. Overall, controlling the morphology of semiconductors can influence PEC performance, which is a useful finding for the future development of PEC sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao W, Xu J, Chen H. Photoelectrochemical DNA biosensors. Chem Rev. 2014;114:7421–41.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao W, Xu J, Chen H. Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev. 2015;44:729–41.

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Zhang N, Zhao W, Jiang D, Xu J, Chen H. Polymer dots for photoelectrochemical bioanalysis. Anal Chem. 2017;89:4945–50.

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Yin H, Li F, Zhou J, Wang L, Wang J, Ai S. Polydopamine-sensitized WS2/black-TiO2 heterojunction for histone acetyltransferase detection with enhanced visible-light-driven photoelectrochemical activity. Chem Eng J. 2020;393: 124707.

    Article  CAS  Google Scholar 

  5. Fu Y, Ding F, Chen J, Liu M, Zhang X, Du C, Si S. Label-free and near-zero-background-noise photoelectrochemical assay of methyltransferase activity based on a Bi2S3/Ti3C2 schottky junction. Chem Commun. 2020;56:5799–802.

    Article  CAS  Google Scholar 

  6. Wei W, Liu D, Wei Z, Zhu Y. Short-range π–π stacking assembly on P25 TiO2 nanoparticles for enhanced visible-light photocatalysis. ACS Catal. 2016;7:652–63.

    Article  Google Scholar 

  7. Luo YN, Tan XC, Young DJ, Chen QY, Huang YH, Feng DF, Ai CH, Mi Y. A photoelectrochemical aptasensor for the sensitive detection of streptomycin based on a TiO2/BiOI/BiOBr heterostructure. Anal Chim Acta. 2020;1115:33–40.

    Article  CAS  PubMed  Google Scholar 

  8. Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117:6225–331.

    Article  CAS  PubMed  Google Scholar 

  9. Hartnett P, Timalsina A, Matte H, Zhou N, Guo X, Zhao W, Facchetti A, Chang R, Hersam M, Wasielewski M, Marks T. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. J Am Chem Soc. 2014;136:16345–56.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Zheng Y, Li M, Hu T, Yuan R, Wei S. Cosensitization strategy with cascade energy level arrangement for ultrasensitive photoelectrochemical protein detection. Anal Chem. 2018;90:12278–83.

    Article  CAS  PubMed  Google Scholar 

  11. Perk B, Büyüksünetçi YT, Çetin R, Hakli Ö, Anik Ü. Electrochemical sensor based on perylene diimide derivative modified electrode. Monatsh Chem. 2021;152:193–9.

    Article  CAS  Google Scholar 

  12. Zhang J, Li Y, Huang J, Hu H, Zhang G, Ma T, Chow P, Ade H, Pan D, Yan H. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J Am Chem Soc. 2017;139:16092–5.

    Article  CAS  PubMed  Google Scholar 

  13. Singh P, Mittal L, Kumar K, Sharma P, Bhargava G, Kumar S. Multifunctional metallo-supramolecular interlocked hexagonal microstructures for the detection of lead and thiols in water. Chem Commun. 2018;54:9482–5.

    Article  CAS  Google Scholar 

  14. Hu R, Zhang X, Xu Q, Lu D, Yan Y, Xu Q, Ruan Q, Mo L, Zhang X. Universal aptameric biosensor: multiplexed detection of small analytes via aggregated perylene-based broad-spectrum quencher. Biosens Bioelectron. 2017;92:40–6.

    Article  CAS  PubMed  Google Scholar 

  15. Roy R, Sajeev NR, Sharma V, Koner AL. Aggregation induced emission switching based ultrasensitive ratiometric detection of biogenic diamines uing a perylenediimide-based smart fluoroprobe. ACS Appl Mater Interfaces. 2019;11:47207–17.

    Article  CAS  PubMed  Google Scholar 

  16. Krieg E, Weissman H, Shirman E, Shimoni E, Rybtchinski B. A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nat Nanotechnol. 2011;6:141–6.

    Article  CAS  PubMed  Google Scholar 

  17. Datar A, Balakrishnan K, Zang L. One-dimensional self-assembly of a water soluble perylene diimide molecule by pH triggered hydrogelation. Chem Commun. 2013;49:6894–6.

    Article  CAS  Google Scholar 

  18. Zhang J, Tan L, Jiang W, Hu W, Wang Z. N-alkyl substituted di(perylene bisimides) as air-stable electron transport materials for solution-processible thin-film transistors with enhanced performance. J Mater Chem C. 2013;1:3200–6.

    Article  CAS  Google Scholar 

  19. Zhang S, Wang X, Huang Y, Zhai H, Liu Z. Ammonia sensing properties of perylene diimides: effects of core-substituted chiral groups. Sens Actuators B Chem. 2018;254:805–10.

    Article  CAS  Google Scholar 

  20. Vajiravelu S, Ramunas L, Vidas GJ, Valentas G, Vygintas J, Valiyaveettil S. Effect of substituents on the electron transport properties of bay substituted perylene diimide derivatives. J Mater Chem. 2009;19:4268–75.

    Article  CAS  Google Scholar 

  21. Yang C, Hu K, Wang D, Zubi Y, Lee S, Puthongkham P, Mirkin M, Venton B. Cavity carbon-nanopipette electrodes for dopamine detection. Anal Chem. 2019;91:4618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang Y, Lv X, Gou W, Zhou X, Hao J, Feng J, Qi Y, Hu L, Yan Z. Ag nanozyme strengthened by folic acid: superior peroxidase-mimicking activity and application for visual monitoring of dopamine. Anal Bioanal Chem. 2022;414:6611–20.

    Article  CAS  PubMed  Google Scholar 

  23. Chang C, Lee C, Tai N. Nitrogen-incorporated ovoid-shaped nanodiamond films for dopamine detection. ACS Appl Nano Mater. 2020;3:11970–8.

    Article  CAS  Google Scholar 

  24. Jiang L, Liu S, Ren L, Zhang P, Zhao X, Wang Y. Gold nanoparticles and invertase-based aptasensor for detection of dopamine hydrochloride. Food Sci. 2018;39:301–5.

    Google Scholar 

  25. Younus AR, Iqbal J, Muhammad N, Rehman F, Tariq M, Niaz A, Badshah S, Saleh TA, Rahim A. Nonenzymatic amperometric dopamine sensor based on a carbon ceramic electrode of type SiO2/C modified with Co3O4 nanoparticles. Microchim Acta. 2019;186:471.

    Article  Google Scholar 

  26. Sun C, Shen J, Cui R, Yuan F, Zhang H, Wu X. Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine. Anal Bioanal Chem. 2019;411:1375–81.

    Article  CAS  PubMed  Google Scholar 

  27. Kruss S, Salem DP, Vukovic L, Lima B, Vander Ende E, Boyden ES, Strano MS. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc Natl Acad Sci U S A. 2017;114(8):1789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron. 2014;53:220–4.

    Article  CAS  PubMed  Google Scholar 

  29. Ören T, Birel Ö, Anık Ü. Electrochemical determination of dopamine using a novel perylenediimide-derivative modified carbon paste electrode. Anal Lett. 2018;51:1680–93.

    Article  Google Scholar 

  30. Varol TÖ, Perk B, Avci O, Akpolat O, Hakli Ö, Xue C, Anik Ü. Fabrication of graphene/azobenzene-perylene diimide derivative modified electrochemical sensors for the dopamine detection based on full factorial experimental design. Measurement. 2019;147: 106867.

    Article  Google Scholar 

  31. Somayeh T, Hadi B. A Sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Anal Bioanal Chem Res. 2019;6:171–82.

    Google Scholar 

  32. Hassan KM, Hadi B, Senthil K, Somayeh T, Peyman MJ, Fatemeh K, Ceren K, Yasser V, Mehdi B, Jalal R, Pau LS, Saravanan R, Li F, Najmeh Z. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol. 2022;164: 112961.

    Article  Google Scholar 

  33. Hadi B, Mohammad MA, Hossein N, Bahram G. Electrochemical characterization of 2, 2’-[1, 2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid. J Solid State Electr. 2009;13:353–63.

    Article  Google Scholar 

  34. Zhang P, Zhu Q, Soomro RA, He S, Sun N, Qiao N, Xu B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv Funct Mater. 2020;30:2000922.

    Article  CAS  Google Scholar 

  35. Machín A, Fontánez K, Arango JC, Ortiz D, León JD, Pinilla S, Nicolosi V, Petrescu FI, Morant C, Márquez F. One-dimensional (1D) nanostructured materials for energy applications. Materials. 2021;14:2609.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Naqvi S, Kumar M, Kumar R. Facile synthesis and evaluation of electron transport and photophysical properties of photoluminescent PDI derivatives. ACS Omega. 2019;4:19735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bian Y, Chen J, Xu S, Zhou Y, Zhu L, Xiang Y, Xia D. The effect of a hydrogen bond on the supramolecular self-aggregation mode and the extent of metal-free benzoxazole-substituted phthalocyanines. New J Chem. 2015;39:5750–8.

    Article  CAS  Google Scholar 

  38. Babaei H, McGaughey A, Wilmer C. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks. Chem Sci. 2017;8:583–9.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Chi K, Li D, Deng Y, Ma Y, Xu Q, Hu R, Yang Y. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens Bioelectron. 2019;129:64–71.

    Article  CAS  PubMed  Google Scholar 

  40. Wen J, Xie J, Zhang H, Zhang A, Liu Y, Chen X, Li X. Constructing multi-functional metallic Ni interfacelayers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl Mater Interfaces. 2017;9:14031–42.

    Article  CAS  PubMed  Google Scholar 

  41. Teng Y, Jia X, Li J, Wang E. Ratiometric Fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem. 2015;87:4897–902.

    Article  CAS  PubMed  Google Scholar 

  42. Maheshwaran S, Tamilalagan E, Chen S, Akilarasan M, Huang Y, AlMasoud N, Abualnaja KM, Ouladsmne M. Rationally designed f-MWCNT-coated bismuth molybdate (f-MWCNT@BMO) nanocomposites for the voltammetric detection of biomolecule dopamine in biological samples. Microchim Acta. 2021;188:315.

    Article  CAS  Google Scholar 

  43. Zhang Y, Ren W, Fan Y, Dong J, Zhang H, Luo H, Li N. Label-free fluorescent discrimination and detection of epinephrine and dopamine based on bioinspired in situ copolymers and excitation wavelength switch. Anal Chim Acta. 2019;1054:167–75.

    Article  CAS  PubMed  Google Scholar 

  44. Yang J, Hu Y, Li Y. Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron. 2019;135:224–30.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Xu M, Gao P, Gao W, Bian Z, Jia N. Photoelectrochemical sensing of dopamine using gold-TiO2 nanocomposites and visible-light illumination. Microchim Acta. 2019;186:326.

    Article  Google Scholar 

  46. Wang H, Ye H, Zhang B, Zhao F, Zeng B. Synthesis of ZnIn2S4/CdS heterostructure based on electrostatic interaction mechanism for the indirect photoelectrochemical detection of dopamine. J Phys Chem C. 2018;122:20329–36.

    Article  CAS  Google Scholar 

  47. Velmurugan S, Yang C-K. Fabrication of high-performance molybdenum disulfide graphitic carbon nitride p-n heterojunction stabilized rGO/ITO photoelectrode for photoelectrochemical determination of dopamine. ACS Appl Electron Mater. 2020;9:2845–56.

    Article  Google Scholar 

  48. Chen Y, Li X, Cai G, Li M, Tang D. In situ formation of (0 0 1)TiO2/Ti3C2 heterojunctions for enhanced photoelectrochemical detection of dopamine. Electrochem Commun. 2021;125: 106987.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants awarded by the National Natural Science Foundation of China (Grants 21864026 and 21605130) and the Natural Science Foundation of Yunnan Province (Grants 2018FB016 and 2016FD017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiu-Xia Li or Rong Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 797 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, KN., Liu, JW., Guan, Y. et al. Effect of perylene assembly shapes on photoelectrochemical properties and ultrasensitive biosensing behaviors toward dopamine. Anal Bioanal Chem 415, 5845–5854 (2023). https://doi.org/10.1007/s00216-023-04865-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04865-7

Keywords

Navigation