Skip to main content
Log in

Synthesis of a Fluorescent Sensor by Exploiting Nitrogen-Doped MXene Quantum Dots for the Detection of Dopamine

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

MXene quantum dots (QDs) are emerging two-dimensional materials from the MXene family that possess unique physicochemical properties and are employed in divergent disciplines, such as energy storage, conversion, catalysis, medicine, and biosensing. In this study, we synthesized MXene QDs using the MAX phase of MXene into its sheets by acidic treatment, followed by doping with ethylenediamine (EDA), and produced nitrogen-doped QDs (NMQDs) via the hydrothermal method. The resulting NMQDs showed excellent fluorescence quenching with a neurotransmitter, i.e., dopamine (DA). These NMQDs showed a strong blue fluorescence with a photoluminescence (PL) emission wavelength maximum of 400 nm under the excitation wavelength maximum of 330 nm. The optical properties of NMQDs were investigated using UV–Vis and PL spectroscopy techniques. The morphological, elemental constitution, and phase composition features were characterized by employing HRTEM, SEM, XPS, XRD, FTIR techniques, etc. The NMQDs delivered high sensitivity towards DA with a limit of detection (LOD) of 18 nM within the linear concentration range between 20 and 100 nM. These results suggest that these NMQDs have the potential to be used as fluorescent sensors for neurotransmitter detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 

Similar content being viewed by others

Data availability

Data available on request.

References

  1. K. Rizwan, A. Rahdar, M. Bilal, H.M. Iqbal, Chemosphere 291, 132820 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Mater. Des. 196, 109091 (2020)

    Article  CAS  Google Scholar 

  3. X. Feng, M. Li, J. Wang, X. Zou, H. Wang, D. Wang, C. Liang, Mater. 15(13), 4543 (2022)

    Article  CAS  Google Scholar 

  4. H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, ACS Nano 13(3), 3448–3456 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. D. Huang, Y. Wu, F. Ai, X. Zhou, G. Zhu, Sens. Actuators B Chem. 342, 130074 (2021)

    Article  CAS  Google Scholar 

  6. T.S. Anirudhan, S. Alexander, A. Lilly, Polymers 55(19), 4820–4831 (2014)

    Article  CAS  Google Scholar 

  7. H.Y. Lee, S.B. Park, Mol. Biosyst. 7(2), 304–310 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. K. Wang, J. Dong, L. Sun, H. Chen, Y. Wang, C. Wang, L. Dong, RSC Adv. 6(94), 91225–91232 (2016)

    Article  ADS  CAS  Google Scholar 

  9. C. Zhao, Y. Jiao, J. Hua, J. Yang, Y. Yang, J. Fluoresce 28, 269–276 (2018)

    Article  CAS  Google Scholar 

  10. A. Tiwari, S. Walia, S. Sharma, S. Chauhan, M. Kumar, T. Gadly, J.K.J. Randhawa, Mater. Chem. B. 11(5), 1029–1043 (2023)

    Article  CAS  Google Scholar 

  11. M.O. Klein, D.S. Battagello, A.R. Cardoso, D.N. Hauser, J.C. Bittencourt, R.G. Correa, Cell. Mol. Neurobiol. 39(1), 31–59 (2019)

    Article  PubMed  Google Scholar 

  12. H. Juárez Olguín, D. Calderón Guzmán, E. Hernández García, G. Barragán Mejía, Oxid. Med. Cell. Longev. 2016, 1–13 (2016)

    Article  Google Scholar 

  13. R.J. Jakel, W.F. Maragos, Trends Neurosci. 23(6), 239–245 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. R.A. Mitchell, N. Herrmann, K.L. Lanctôt, CNS Neurosci. 17(5), 411–427 (2011)

    Article  CAS  Google Scholar 

  15. Kim et al., Nat. Nanotechnol. 13, 812–818 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Qu, J. Wang, J. Ren, X. Qu, Chem. Eur. J. 19, 7243–7249 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Q. Bai, H. Luo, X. Yi, S. Shi, L. Wang, M. Liu, N. Sui, Microchem. J. 179, 107521 (2022)

    Article  CAS  Google Scholar 

  18. J. Gou, L. Zhao, Y. Li, J. Zhang, ACS Appl. Nano Mater. 4(11), 12308–12315 (2021)

    Article  CAS  Google Scholar 

  19. Q. Guan, J. Ma, W. Yang, R. Zhang, X. Zhang, X. Dong, Q. Xu, Nanoscale 11(30), 14123–14133 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Chem. Mater. 27(15), 5314–5323 (2015)

    Article  CAS  Google Scholar 

  21. Y. Bai, Y. He, Y. Wang, G. Song, Mikrochim. Acta 188, 1–10 (2021)

    Article  Google Scholar 

  22. F. Yan, J. Sun, Y. Zang, Z. Sun, H. Zhang, J. Xu, X. Wang, Dyes Pigm. 195, 109720 (2021)

    Article  CAS  Google Scholar 

  23. X. Chen, S. Chen, Q. Ma, Anal. Methods 9(15), 2246–2251 (2017)

    Article  CAS  Google Scholar 

  24. H. Shabbir, E. Csapó, M. Wojnicki, Inorganics 11(6), 262 (2023)

    Article  CAS  Google Scholar 

  25. J. Manioudakis, F. Victoria, C.A. Thompson, L. Brown, M. Movsum, R. Lucifero, R. Naccache, J. Mater. Chem. C 7(4), 853–862 (2019)

    Article  CAS  Google Scholar 

  26. K.G. Nguyen, I.A. Baragau, R. Gromicova, A. Nicolaev, S.A. Thomson, A. Rennie, S. Kellici, Sci. Rep. 12(1), 13806 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Channer et al., Pharmacol. Rev. 75, 62–158 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. Liu, F. Zhang, J. Hu, W. Gao, M. Zhang, Front. Chem. 8, 605028 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  29. C. Zhao, X. Li, C. Cheng, Y. Yang, Microchem. J. 147, 183–190 (2019)

    Article  CAS  Google Scholar 

  30. K. Winbeck, H. Poppert, T. Etgen, B. Conrad, D. Sander, Stroke 33(10), 2459–2464 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. X. Liu, M. Tian, W. Gao, J. Zhao, J. Anal. Methods Chem. 2019, 1–7 (2019)

    ADS  Google Scholar 

  32. P. Palladino, F. Torrini, S. Scarano, M. Minunni, J. Pharm. Biomed. Anal. 179, 113016 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. I.L. Medintz, M.H. Stewart, S.A. Trammell, K. Susumu, J.B. Delehanty, B.C. Mei, H. Mattoussi, Nat. Mater. 9(8), 676–684 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was support by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03038996) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1A2C1009968). The authors would like to thank the Smart Materials Research Center for IoT at Gachon University for their technical support with instruments (FT-IR and SEM).

Funding

The work of Jong Sung Kim was funded by National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03038996), and National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2022R1A2C1009968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsung Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapriya, G., Sangubotla, R. & Kim, J. Synthesis of a Fluorescent Sensor by Exploiting Nitrogen-Doped MXene Quantum Dots for the Detection of Dopamine. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00144-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00144-y

Keywords

Navigation