Skip to main content

Advertisement

Log in

Photoelectrochemical sensing of dopamine using gold-TiO2 nanocomposites and visible-light illumination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2019

This article has been updated

Abstract

A photoelectrochemical (PEC) method was developed for the determination of dopamine. It is making use of a composite prepared from gold nanoparticles and TiO2 (type P25) and placed on a fluorine-doped tin oxide (FTO) electrode. The composites are used for photoelectrical detection with improved electron transfer efficiency for photoproduction and with improved photoelectrical conversion efficiency. This is due to the excellent electrical conductivity and surface plasmon resonance absorption by gold nanoparticles, and also by the photocatalytic effect of TiO2. Dopamine binds easily to the surface of the composites and acts as an electron donor. This electrode gives a strongly enhanced photocurrent which increases linearly in the 0.1 to 100 μM dopamine concentration range and has a 23 nM detection limit (at S/N = 3). The electrode was operated over 15 cycles of light-on and light-off states every 20 s under visible-light illumination, and the sensor indicates good stability. In addition, it is selective over several possible interferents including uric acid, L-cysteine, glutathione, ascorbic acid and glucose.

A new gold/P25 composite-based photoelectrochemical sensing scheme for dopamine is described. Under visible light irradiation, the photocurrent response is increased with the increasing concentration of dopamine (DA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 01 June 2019

    The published version of this article, unfortunately, contains error. The author found out that Chinese characters are shown in Scheme 1a.

References

  1. Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A 102(29):10023–10028. https://doi.org/10.1073/pnas.0504657102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu X, Xie L, Li H (2012) Electrochemical biosensor based on reduced graphene oxide and au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid. J Electroanal Chem 682:158–163. https://doi.org/10.1016/j.jelechem.2012.07.031

    Article  CAS  Google Scholar 

  3. Zhao D, Song H, Hao L, Liu X, Zhang L, Lv Y (2013) Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 107:133–139. https://doi.org/10.1016/j.talanta.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  4. Qin C, Bai X, Zhang Y, Gao K (2018) Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine. Mikrochim Acta 185(5):278. https://doi.org/10.1007/s00604-018-2788-4

    Article  CAS  PubMed  Google Scholar 

  5. Gorwood P, Le Strat Y, Ramoz N, Dubertret C, Moalic JM, Simonneau M (2012) Genetics of dopamine receptors and drug addiction. Hum Genet 131(6):803–822. https://doi.org/10.1007/s00439-012-1145-7

    Article  CAS  PubMed  Google Scholar 

  6. Grace AA (2012) Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 62(3):1342–1348. https://doi.org/10.1016/j.neuropharm.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  7. Darbin O (2012) The aging striatal dopamine function. Parkinsonism Relat D 18(5):426–432. https://doi.org/10.1016/j.parkreldis.2011.11.025

    Article  Google Scholar 

  8. Wang HY, Feng XG, Zhang M, Zhao H (2007) Determination of dopamine in injections and urine by an enzyme-catalyzed fluorescence quenching method. Anal Sci 23(11):1297–1300

    Article  CAS  Google Scholar 

  9. Wu B, Miao C, Yu L, Wang Z, Huang C, Jia N (2014) Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine. Sensors Actuators B Chem 195:22–27. https://doi.org/10.1016/j.snb.2014.01.012

    Article  CAS  Google Scholar 

  10. Song P, Mabrouk OS, Hershey ND, Kennedy RT (2012) In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography-mass spectrometry. Anal Chem 84(1):412–419. https://doi.org/10.1021/ac202794q

    Article  CAS  PubMed  Google Scholar 

  11. Habibi B, Jahanbakhshi M, Pournaghi-Azar MH (2011) Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry. Electrochim Acta 56(7):2888–2894. https://doi.org/10.1016/j.electacta.2010.12.079

    Article  CAS  Google Scholar 

  12. Liu YM, Wang CQ, Mu HB, Cao JT, Zheng YL (2007) Determination of catecholamines by CE with direct chemiluminescence detection. Electrophoresis 28(12):1937–1941. https://doi.org/10.1002/elps.200600741

    Article  CAS  PubMed  Google Scholar 

  13. Huang Y, Miao YE, Ji S, Tjiu WW, Liu T (2014) Electrospun carbon nanofibers decorated with ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl Mater Interfaces 6(15):12449–12456. https://doi.org/10.1021/am502344p

    Article  CAS  PubMed  Google Scholar 

  14. Mao Y, Bao Y, Gan S, Li F, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28(1):291–297. https://doi.org/10.1016/j.bios.2011.07.034

    Article  CAS  PubMed  Google Scholar 

  15. Yan Y, Liu Q, Du X, Qian J, Mao H, Wang K (2015) Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal Chim Acta 853:258–264. https://doi.org/10.1016/j.aca.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Gao P, Wang H, Han L, Zhang Y, Wang P, Jia N (2018) A PPy/Cu2O molecularly imprinted composite film-based visible light-responsive photoelectrochemical sensor for microcystin-LR. J Mater Chem C 6(15):3937–3944. https://doi.org/10.1039/c7tc05743a

    Article  CAS  Google Scholar 

  17. Gao P, Wang H, Li P, Gao W, Zhang Y, Chen J, Jia N (2018) In-site synthesis molecular imprinting Nb2O5 -based photoelectrochemical sensor for bisphenol a detection. Biosens Bioelectron 121:104–110. https://doi.org/10.1016/j.bios.2018.08.070

    Article  CAS  PubMed  Google Scholar 

  18. Hun X, Wang S, Mei S, Qin H, Zhang H, Luo X (2017) Photoelectrochemical dopamine sensor based on a gold electrode modified with SnSe nanosheets. Microchim Acta 184(9):3333–3338. https://doi.org/10.1007/s00604-017-2347-4

    Article  CAS  Google Scholar 

  19. Li H, Zhu M, Chen W, Wang K (2017) Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Microchim Acta 184(12):4827–4833. https://doi.org/10.1007/s00604-017-2529-0

    Article  CAS  Google Scholar 

  20. Li H, Xue Y, Wang W (2014) Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator. Biosens Bioelectron 54:317–322. https://doi.org/10.1016/j.bios.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  21. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033. https://doi.org/10.1021/nl201766h

    Article  CAS  PubMed  Google Scholar 

  22. Luo J, Karuturi SK, Liu L, Su LT, Tok AI, Fan HJ (2012) Homogeneous photosensitization of complex TiO(2) nanostructures for efficient solar energy conversion. Sci Rep 2:451. https://doi.org/10.1038/srep00451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Da P, Li W, Lin X, Wang Y, Tang J, Zheng G (2014) Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO(2) nanowires. Anal Chem 86(13):6633–6639. https://doi.org/10.1021/ac501406x

    Article  CAS  PubMed  Google Scholar 

  24. Hu L, Fong CC, Zhang X, Chan LL, Lam PK, Chu PK, Wong KY, Yang M (2016) Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for Photoenhanced electrochemical detection of bisphenol a. Environ Sci Technol 50(8):4430–4438. https://doi.org/10.1021/acs.est.5b05857

    Article  CAS  PubMed  Google Scholar 

  25. Bian Z, Tachikawa T, Zhang P, Fujitsuka M, Majima T (2014) Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J Am Chem Soc 136(1):458–465. https://doi.org/10.1021/ja410994f

    Article  CAS  PubMed  Google Scholar 

  26. Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO, DuChene JS, Qiu J, Wang YC, Engelhard MH, Su D, Stach EA, Wei WD (2014) Surface plasmon-driven water reduction: gold nanoparticle size matters. J Am Chem Soc 136(28):9842–9845. https://doi.org/10.1021/ja504097v

    Article  CAS  PubMed  Google Scholar 

  27. Zhao WW, Tian CY, Xu JJ, Chen HY (2012) The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing. Chem Commun (Camb) 48(6):895–897. https://doi.org/10.1039/c1cc16775h

    Article  CAS  Google Scholar 

  28. Zhu YC, Zhang N, Ruan YF, Zhao WW, Xu JJ, Chen HY (2016) Alkaline phosphatase tagged antibodies on gold nanoparticles/TiO2 nanotubes electrode: a Plasmonic strategy for label-free and amplified Photoelectrochemical immunoassay. Anal Chem 88(11):5626–5630. https://doi.org/10.1021/acs.analchem.6b01261

    Article  CAS  PubMed  Google Scholar 

  29. Xiao F (2012) Layer-by-layer self-assembly construction of highly ordered metal-TiO2 nanotube arrays Heterostructures (M/TNTs, M = au, ag, Pt) with tunable catalytic activities. J Phys Chem C 116(31):16487–16498. https://doi.org/10.1021/jp3034984

    Article  CAS  Google Scholar 

  30. Gao Z-D, Han Y-Y, Li Y-C, Yang M, Song Y-Y (2014) Photocatalytic synthesis and synergistic effect of Prussian blue-decorated au nanoparticles/TiO2 nanotube arrays for H2O2 amperometric sensing. Electrochim Acta 125:530–535. https://doi.org/10.1016/j.electacta.2014.01.149

    Article  CAS  Google Scholar 

  31. Ding IK, Zhu J, Cai W, Moon S-J, Cai N, Wang P, Zakeeruddin SM, Grätzel M, Brongersma ML, Cui Y, McGehee MD (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1(1):52–57. https://doi.org/10.1002/aenm.201000041

    Article  CAS  Google Scholar 

  32. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5(1):5133–5146. https://doi.org/10.1039/c1ee02875h

    Article  CAS  Google Scholar 

  33. Du J, Zhu B, Chen X (2013) Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 9(24):4104–4111. https://doi.org/10.1002/smll.201300593

    Article  CAS  PubMed  Google Scholar 

  34. Thimsen E, Le Formal F, Gratzel M, Warren SC (2011) Influence of plasmonic au nanoparticles on the photoactivity of Fe(2)O(3) electrodes for water splitting. Nano Lett 11(1):35–43. https://doi.org/10.1021/nl1022354

    Article  CAS  PubMed  Google Scholar 

  35. Zhao WW, Yu XD, Xu JJ, Chen HY (2016) Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. Nanoscale 8(40):17407–17414. https://doi.org/10.1039/c6nr05011e

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13(1):14–20. https://doi.org/10.1021/nl3029202

    Article  CAS  PubMed  Google Scholar 

  37. Archana PS, Pachauri N, Shan Z, Pan S, Gupta A (2015) Plasmonic enhancement of Photoactivity by gold nanoparticles embedded in hematite films. J Phys Chem C 119(27):15506–15516. https://doi.org/10.1021/acs.jpcc.5b02357

    Article  CAS  Google Scholar 

  38. Wang GL, Xu JJ, Chen HY (2009) Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation. Biosens Bioelectron 24(8):2494–2498. https://doi.org/10.1016/j.bios.2008.12.031

    Article  CAS  PubMed  Google Scholar 

  39. Cai Z, Rong M, Zhao T, Zhao L, Wang Y, Chen X (2015) Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets. J Electroanal Chem 759:32–37. https://doi.org/10.1016/j.jelechem.2015.08.037

    Article  CAS  Google Scholar 

  40. Qiao B, Liang J-X, Wang A, Xu C-Q, Li J, Zhang T, Liu JJ (2015) Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res 8(9):2913–2924. https://doi.org/10.1007/s12274-015-0796-9

    Article  CAS  Google Scholar 

  41. Mezni A, Ibrahim MM, El-Kemary M, Shaltout AA, Mostafa NY, Ryl J, Kumeria T, Altalhi T, Amin MA (2018) Cathodically activated au/TiO2 nanocomposite synthesized by a new facile solvothermal method: an efficient electrocatalyst with Pt-like activity for hydrogen generation. Electrochim Acta 290:404–418. https://doi.org/10.1016/j.electacta.2018.08.083

    Article  CAS  Google Scholar 

  42. Xiao FX, Zeng Z, Liu B (2015) Bridging the gap: Electron relay and Plasmonic sensitization of metal nanocrystals for metal clusters. J Am Chem Soc 137(33):10735–10744. https://doi.org/10.1021/jacs.5b06323

    Article  CAS  PubMed  Google Scholar 

  43. Baig N, Kawde A-N (2016) A cost-effective disposable graphene-modified electrode decorated with alternating layers of au NPs for the simultaneous detection of dopamine and uric acid in human urine. RSC Adv 6(84):80756–80765. https://doi.org/10.1039/c6ra10055d

    Article  CAS  Google Scholar 

  44. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369. https://doi.org/10.1016/j.bios.2010.02.031

    Article  CAS  PubMed  Google Scholar 

  45. Yuan D, Chen S, Yuan R, Zhang J, Liu X (2014) An ECL sensor for dopamine using reduced graphene oxide/multiwall carbon nanotubes/gold nanoparticles. Sensors Actuators B Chem 191:415–420. https://doi.org/10.1016/j.snb.2013.10.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Shanghai Science and Technology Committee (17070503000), International Joint Laboratory on Resource Chemistry (IJLRC), Shanghai Engineering Research Center of Green Energy Chemical Engineering, and Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R49).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenfeng Bian or Nengqin Jia.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, M., Gao, P. et al. Photoelectrochemical sensing of dopamine using gold-TiO2 nanocomposites and visible-light illumination. Microchim Acta 186, 326 (2019). https://doi.org/10.1007/s00604-019-3401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3401-1

Keywords

Navigation