Skip to main content
Log in

Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization–MSI (DESI-MSI) and matrix-assisted laser desorption/ionization–MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Isberg OG, Xiang Y, Bodvarsdottir SK, Jonasson JG, Thorsteinsdottir M, Takats Z. The effect of sample age on the metabolic information extracted from formalin-fixed and paraffin embedded tissue samples using desorption electrospray ionization mass spectrometry imaging. J Mass Spectrom Adv Clin Lab. 2021;22:50–5. https://doi.org/10.1016/J.JMSACL.2021.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giera M, Yanes O, Siuzdak G. Metabolite discovery: biochemistry’s scientific driver. Cell Metab. 2022;34:21–34. https://doi.org/10.1016/J.CMET.2021.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Mol Case Stud. 2015;1:a000588. https://doi.org/10.1101/MCS.A000588.

  4. Lamichhane S, Sen P, Dickens AM, Hyötyläinen T, Orešič M. An overview of metabolomics data analysis: current tools and future perspectives. Compr Anal Chem. 2018;82:387–413. https://doi.org/10.1016/BS.COAC.2018.07.001.

    Article  CAS  Google Scholar 

  5. Liu X, Hoft DF, Peng G. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 2022;43:132–47. https://doi.org/10.1016/J.IT.2021.12.004.

    Article  CAS  PubMed  Google Scholar 

  6. More AS, Ranadheera CS, Fang Z, Zhang P, Warner R, Ajlouni S. Using biological metabolites as biomarkers to predict safety and quality of whole and minimally processed spinach. Food Chem. 2022;375:131870. https://doi.org/10.1016/J.FOODCHEM.2021.131870.

  7. Wu Q, Li J, Sun X, He D, Cheng Z, Li J, Zhang X, Xie Y, Zhu Y, Lai M. Multi-stage metabolomics and genetic analyses identified metabolite biomarkers of metabolic syndrome and their genetic determinants. EBioMedicine 2021;74:103707. https://doi.org/10.1016/J.EBIOM.2021.103707.

  8. Wolf J, Dong C, O’Day EM. Metabolite biomarkers of response (BoRs): towards a fingerprint for the evolution of metastatic breast cancer. Prog Biophys Mol Biol. 2021;165:8–18. https://doi.org/10.1016/J.PBIOMOLBIO.2021.08.005.

    Article  CAS  PubMed  Google Scholar 

  9. Wei W, Li Z, Li H, An Y, Qu H, Yao C, Zhang J, Li J, Zhang G, Shi Y, Guo D an. Exploration of tissue distribution of ginsenoside Rg1 by LC-MS/MS and nanospray desorption electrospray ionization mass spectrometry. J Pharm Biomed Anal. 2021;198:113999. https://doi.org/10.1016/J.JPBA.2021.113999.

  10. Hu W, Chang L, Ke C, Xie Y, Shen J, Tan B, Liu J. Challenges and stepwise fit-for-purpose optimization for bioanalyses of remdesivir metabolites nucleotide monophosphate and triphosphate in mouse tissues using LC–MS/MS. J Pharm Biomed Anal. 2021;194:113806. https://doi.org/10.1016/J.JPBA.2020.113806.

  11. Zhong B, Gibson EG, Davis A, Roussel MF, Stewart CF. LC-MS/MS method for quantitation of gemcitabine and its metabolite 2′,2′-difluoro-2′-deoxyuridine in mouse plasma and brain tissue: application to a preclinical pharmacokinetic study. J Pharm Biomed Anal. 2021;198:114025. https://doi.org/10.1016/J.JPBA.2021.114025.

  12. Jouaneh TMM, Motta N, Wu C, Coffey C, Via CW, Kirk RD, Bertin MJ. Analysis of botanicals and botanical supplements by LC-MS/MS-based molecular networking: approaches for annotating plant metabolites and authentication. Fitoterapia 2022;105200. https://doi.org/10.1016/J.FITOTE.2022.105200.

  13. Saito-Shida S, Kashiwabara N, Nemoto S, Akiyama H. Development of an LC–MS/MS-based method for determination of acetochlor and its metabolites in crops. J Food Compost Anal. 2022;108:104454. https://doi.org/10.1016/J.JFCA.2022.104454.

  14. Li W, Zhang P, Hou X, Tang T, Li S, Sun R, Zhang Z, Xu F. Twins labeling derivatization-based LC-MS/MS strategy for absolute quantification of paired prototypes and modified metabolites. Anal Chim Acta 2022;1193:339399. https://doi.org/10.1016/J.ACA.2021.339399.

  15. Bergman HM, Lundin E, Andersson M, Lanekoff I. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. Analyst. 2016;141:3686–95. https://doi.org/10.1039/C5AN02620B.

    Article  CAS  PubMed  Google Scholar 

  16. Kuru K. Optimization and enhancement of H&E stained microscopical images by applying bilinear interpolation method on lab color mode. Theor Biol Med Model 2014;11:9. https://doi.org/10.1186/1742-4682-11-9.

  17. Azevedo Tosta TA, de Faria PR, Neves LA, do Nascimento MZ. Computational normalization of H&E-stained histological images: progress, challenges and future potential. Artif Intell Med. 2019;95:118–132.

  18. Salido J, Vallez N, González-López L, Deniz O, Bueno G. Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images. Comput Methods Programs Biomed. 2023;235:107528. https://doi.org/10.1016/j.cmpb.2023.107528.

  19. Cizkova K, Foltynkova T, Gachechiladze M, Tauber Z. Comparative analysis of immunohistochemical staining intensity determined by light microscopy, imagej and qupath in placental hofbauer cells. Acta Histochem Cytochem. 2021;54:21–9. https://doi.org/10.1267/ahc.20-00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. Glob J Health Sci. 2015;8:72–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Greer T, Sturm R, Li L. Mass spectrometry imaging for drugs and metabolites. J Proteomics. 2011;74:2617–31. https://doi.org/10.1016/J.JPROT.2011.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu G, Shao Y, Liu Y, Pei T, Li L, Zhang D, Guo G, Wang X. Single-cell metabolite analysis by electrospray ionization mass spectrometry. TrAC Trends Anal Chem. 2021;143:116351. https://doi.org/10.1016/J.TRAC.2021.116351.

  23. Zou Y, Tang W, Li B. Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol. 2022;371:109675. https://doi.org/10.1016/J.IJFOODMICRO.2022.109675.

  24. Balluff B, Heeren RMA, Race AM. An overview of image registration for aligning mass spectrometry imaging with clinically relevant imaging modalities. J Mass Spectrom Adv Clin Lab. 2022;23:26–38. https://doi.org/10.1016/J.JMSACL.2021.12.006.

    Article  CAS  PubMed  Google Scholar 

  25. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science (1979) 2004;306:471–473. https://doi.org/10.1126/science.1104404.

  26. Ishii Y, Nakamura K, Mitsumoto T, Takimoto N, Namiki M, Takasu S, Ogawa K. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging. Food Chem Toxicol. 2022;161:112851. https://doi.org/10.1016/J.FCT.2022.112851.

  27. Zhang X, Wu C, Tan W. Brain lipid dynamics in amyloid precursor protein/presenilin 1 mouse model of early Alzheimer’s disease by desorption electrospray ionization and matrix assisted laser desorption ionization–mass spectrometry imaging techniques. J Proteome Res. 2021;20:2643–50. https://doi.org/10.1021/acs.jproteome.0c01050.

    Article  CAS  PubMed  Google Scholar 

  28. Maciel LIL, Pereira I, Ramalho RRF, Ribeiro RI, Pinto MCX, Vaz BG. A new approach for the analysis of amino acid neurotransmitters in mouse brain tissues using DESI imaging. Int J Mass Spectrom. 2022;471:116730. https://doi.org/10.1016/J.IJMS.2021.116730.

  29. Zhao X, Huang X, Zhang X, Shi J, Jia X, Zhu K, Shao B. Distribution visualization of the chlorinated disinfection byproduct of diazepam in zebrafish with desorption electrospray ionization mass spectrometry imaging. Talanta 2022;237:122919. https://doi.org/10.1016/J.TALANTA.2021.122919.

  30. Enomoto H, Miyamoto K. Unique localization of jasmonic acid-related compounds in developing Phaseolus vulgaris L. (common bean) seeds revealed through desorption electrospray ionization-mass spectrometry imaging. Phytochemistry 2021;188:112812. https://doi.org/10.1016/J.PHYTOCHEM.2021.112812.

  31. Islam A, Sakamoto T, Zhai Q, Rahman MdM, Mamun Md al, Takahashi Y, Kahyo T, Setou M. Application of AP-MALDI imaging mass microscope for the rapid mapping of imipramine, chloroquine, and their metabolites in the kidney and brain of wild-type mice. Pharmaceuticals 2022;15:1314. https://doi.org/10.3390/ph15111314.

  32. Treu A, Kokesch-Himmelreich J, Walter K, Hölscher C, Römpp A. Integrating high-resolution MALDI imaging into the development pipeline of anti-tuberculosis drugs. J Am Soc Mass Spectrom. 2020;31:2277–86. https://doi.org/10.1021/jasms.0c00235.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Wang T, Xie P, Song Y, Wang J, Cai Z. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine. Anal Chim Acta 2021;1184:339011. https://doi.org/10.1016/j.aca.2021.339011.

  34. Sun C, Li Z, Ma C, Zang Q, Li J, Liu W, Zhao H, Wang X. Acetone immersion enhanced MALDI-MS imaging of small molecule metabolites in biological tissues. J Pharm Biomed Anal. 2019;176:112797. https://doi.org/10.1016/j.jpba.2019.112797.

  35. He H, Qin L, Zhang Y, Han M, Li J, Liu Y, Qiu K, Dai X, Li Y, Zeng M, Guo H, Zhou Y, Wang X. 3,4-Dimethoxycinnamic acid as a novel matrix for enhanced in situ detection and imaging of low-molecular-weight compounds in biological tissues by MALDI-MSI. Anal Chem. 2019;91:2634–43. https://doi.org/10.1021/acs.analchem.8b03522.

    Article  CAS  PubMed  Google Scholar 

  36. Francese S, Bradshaw R, Flinders B, Mitchell C, Bleay S, Cicero L, Clench MR. Curcumin: a multipurpose matrix for MALDI mass spectrometry imaging applications. Anal Chem. 2013;85:5240–8. https://doi.org/10.1021/AC4007396/SUPPL_FILE/AC4007396_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Han J, Chou A, Yang J, Pan J, Borchers CH. Hydroxyflavones as a new family of matrices for MALDI tissue imaging. Anal Chem. 2013;85:7566–73. https://doi.org/10.1021/ac401595a.

    Article  CAS  PubMed  Google Scholar 

  38. McMillen JC, Fincher JA, Klein DR, Spraggins JM, Caprioli RM. Effect of MALDI matrices on lipid analyses of biological tissues using MALDI-2 postionization mass spectrometry. J Mass Spectrom 2020;55:e4663. https://doi.org/10.1002/JMS.4663.

  39. Barré FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal Chem. 2019;91:10840–8. https://doi.org/10.1021/acs.analchem.9b02495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crecelius AC, Hölscher D, Hoffmann T, Schneider B, Fischer TC, Hanke MV, Flachowsky H, Schwab W, Schubert US. Spatial and temporal localization of flavonoid metabolites in strawberry fruit (Fragaria × ananassa). J Agric Food Chem. 2017;65:3559–68. https://doi.org/10.1021/acs.jafc.7b00584.

    Article  CAS  PubMed  Google Scholar 

  41. Wu J, Cui C, Zhao H, Zhou G, Qin L, Li X, Chen L, Wang X, Wan Y. In-situ detection and imaging of Areca catechu fruit alkaloids by MALDI-MSI. Ind Crops Prod. 2022;188:115533. https://doi.org/10.1016/j.indcrop.2022.115533.

  42. Qi X, Chen L, Hu Z, Shen W, Xu H, Ma L, Wang G, Jing Y, Wang X, Zhang B, Lin J. Cytology, transcriptomics, and mass spectrometry imaging reveal changes in late-maturation elm (Ulmus pumila) seeds. J Plant Physiol. 2022;271. https://doi.org/10.1016/j.jplph.2022.153639.

  43. Lorensen MDBB, Hayat SY, Wellner N, Bjarnholt N, Janfelt C. Leaves of Cannabis sativa and their trichomes studied by DESI and MALDI mass spectrometry imaging for their contents of cannabinoids and flavonoids. Phytochem Anal. 2023. https://doi.org/10.1002/pca.3202.

    Article  PubMed  Google Scholar 

  44. Wu L, Qi K, Liu C, Hu Y, Xu M, Pan Y. Enhanced coverage and sensitivity of imprint DESI mass spectrometry imaging for plant leaf metabolites by post-photoionization. Anal Chem. 2022;94:15108–16. https://doi.org/10.1021/acs.analchem.2c03329.

    Article  CAS  PubMed  Google Scholar 

  45. Tong Q, Zhang C, Tu Y, Chen J, Li Q, Zeng Z, Wang F, Sun L, Huang D, Li M, Qiu S, Chen W. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta 2022;238:123045. https://doi.org/10.1016/j.talanta.2021.123045.

  46. Lim J, Kim Y, Lee W, Kim M, Lee EJ, Kang CS, Han K. Fresh-frozen, optimal cutting temperature (OCT) compound-embedded bone marrow aspirates: a reliable resource for morphological, immunohistochemical and molecular examinations. Int J Lab Hematol. 2010;32:e34-39. https://doi.org/10.1111/j.1751-553X.2009.01139.x.

  47. Tian Y, Bova GS, Zhang H. Quantitative glycoproteomic analysis of optimal cutting temperature-embedded frozen tissues identifying glycoproteins associated with aggressive prostate cancer. Anal Chem. 2011;83:7013–9. https://doi.org/10.1021/ac200815q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom. 2003;38:699–708. https://doi.org/10.1002/jms.505.

    Article  CAS  PubMed  Google Scholar 

  49. Dong Y, D’Mello C, Pinsky W, Lozinski BM, Kaushik DK, Ghorbani S, Moezzi D, Brown D, Melo FC, Zandee S, Vo T, Prat A, Whitehead SN, Yong VW. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat Neurosci. 2021;24:489–503. https://doi.org/10.1038/s41593-021-00801-z.

    Article  CAS  PubMed  Google Scholar 

  50. Sisley EK, Hale OJ, Styles IB, Cooper HJ. Native ambient mass spectrometry imaging of ligand-bound and metal-bound proteins in rat brain. J Am Chem Soc. 2022;144:2120–2128. https://doi.org/10.1021/jacs.1c10032.

  51. Asslan M, Lauzon N, Beus M, Maysinger D, Rousseau S. Mass spectrometry imaging in zebrafish larvae for assessing drug safety and metabolism. Anal Bioanal Chem. 2021;413:5135–46. https://doi.org/10.1007/s00216-021-03476-4.

    Article  CAS  PubMed  Google Scholar 

  52. Endringer Pinto F, Bagger C, Kunze G, Joly-Tonetti N, Thénot JP, Osman-Ponchet H, Janfelt C. Visualisation of penetration of topical antifungal drug substances through mycosis-infected nails by matrix-assisted laser desorption ionisation mass spectrometry imaging. Mycoses. 2020;63:869–75. https://doi.org/10.1111/myc.13103.

    Article  CAS  PubMed  Google Scholar 

  53. Shi Y, Hu H, Hao Q, Wu R, Wang L, Qin L, Gu W, Liu H, Jiang D, Hong L, Zhou Y, Liu X, Feng J, Xue K, Wang X. Michler’s ethylketone as a novel negative-ion matrix for the enhancement of lipid MALDI tissue imaging. Chem Commun. 2022;58:633–6. https://doi.org/10.1039/D1CC05718A.

    Article  CAS  Google Scholar 

  54. Yang C, Wu R, Liu H, Qin L, Chen L, Xu H, Hu H, Li J, Guo H, Shi Y, Jiang D, Hao Q, Feng J, Zhou Y, Liu X, Li G, Wang X. Polyacrylamide gel as a new embedding medium for the enhancement of metabolite MALDI imaging. Chem Commun. 2023;59:3842–5. https://doi.org/10.1039/D2CC07075H.

    Article  CAS  Google Scholar 

  55. Nelson KA, Daniels GJ, Fournie JW, Hemmer MJ. Optimization of whole-body zebrafish sectioning methods for mass spectrometry imaging. J Biomol Tech. 2013;24:119–27. https://doi.org/10.7171/jbt.13-2403-002.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Goodwin RJA. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics. 2012;75:4893–911.

    Article  CAS  PubMed  Google Scholar 

  57. Rao T, Shen B, Zhu Z, Shao Y, Kang D, Li X, Yin X, Li H, Xie L, Wang G, Liang Y. Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues. Talanta. 2017;165:128–35. https://doi.org/10.1016/J.TALANTA.2016.12.049.

    Article  CAS  PubMed  Google Scholar 

  58. Taverna D, Nanney LB, Pollins AC, Sindona G, Caprioli R. Spatial mapping by imaging mass spectrometry offers advancements for rapid definition of human skin proteomic signatures. Exp Dermatol. 2011;20:642. https://doi.org/10.1111/J.1600-0625.2011.01289.X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hermann J, Noels H, Theelen W, Lellig M, Orth-Alampour S, Boor P, Jankowski V, Jankowski J. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging. Anal Bioanal Chem. 2020;412:1263–1275. https://doi.org/10.1007/s00216-019-02296-x.

  60. Grey AC, Tang M, Zahraei A, Guo G, Demarais NJ. Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem. 2021;413:2637–2653. https://doi.org/10.1007/S00216-021-03189-8.

  61. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113:2309–42. https://doi.org/10.1021/CR3004295/ASSET/IMAGES/CR3004295.SOCIAL.JPEG_V03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci. 2021;8:2002425. https://doi.org/10.1002/advs.202002425.

  63. Toft Hansen H, Janfelt C. Aspects of quantitation in mass spectrometry imaging investigated on cryo-sections of spiked tissue homogenates. Anal Chem. 2016;88:11513–20. https://doi.org/10.1021/acs.analchem.6b02711.

    Article  CAS  Google Scholar 

  64. Bianchi F, Mattarozzi M, Careri M. The role of surface in desorption electrospray ionization-mass spectrometry: advances and future trends. Anal Bioanal Chem. 2020;412:3967–73. https://doi.org/10.1007/S00216-020-02671-Z/METRICS.

    Article  CAS  PubMed  Google Scholar 

  65. Mezger STP, Mingels AMA, Bekers O, Cillero-Pastor B, Heeren RMA. Trends in mass spectrometry imaging for cardiovascular diseases. Anal Bioanal Chem. 2019;411:3709–20. https://doi.org/10.1007/S00216-019-01780-8/FIGURES/4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu H, Hao Q, Liu H, Chen L, Wu R, Qin L, Guo H, Li J, Yang C, Hu H, Xue K, Feng J, Zhou Y, Liu B, Li G, Wang X. A concentration-descending washing strategy with methanol for the enhancement of protein imaging in biological tissues by MALDI-MS. Analyst. 2023;148:823–31. https://doi.org/10.1039/D2AN01678H.

    Article  CAS  PubMed  Google Scholar 

  67. Shariatgorji M, Källback P, Gustavsson L, Schintu N, Svenningsson P, J.A. Goodwin R, E. Andren P. Controlled-pH tissue cleanup protocol for signal enhancement of small molecule drugs analyzed by MALDI-MS imaging. Anal Chem. 2012;84:4603–4607. https://doi.org/10.1021/ac203322q.

  68. Diehl HC, Beine B, Elm J, Trede D, Ahrens M, Eisenacher M, Marcus K, Meyer HE, Henkel C. The challenge of on-tissue digestion for MALDI MSI- a comparison of different protocols to improve imaging experiments. Anal Bioanal Chem. 2015;407:2223–2243. https://doi.org/10.1007/S00216-014-8345-Z.

  69. Raghunathan R, Sethi MK, Zaia J. On-slide tissue digestion for mass spectrometry based glycomic and proteomic profiling. MethodsX. 2019;6:2329–47. https://doi.org/10.1016/J.MEX.2019.09.029.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Judd AM, Gutierrez DB, Moore JL, Patterson NH, Yang J, Romer CE, Norris JL, Caprioli RM. A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry. J Mass Spectrom. 2019;54:716. https://doi.org/10.1002/JMS.4384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ito T, Hiramoto M. Use of mTRAQ derivatization reagents on tissues for imaging neurotransmitters by MALDI imaging mass spectrometry: the triple spray method. Anal Bioanal Chem. 2019;411:6847–56. https://doi.org/10.1007/S00216-019-02052-1/FIGURES/7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zecchi R, Franceschi P, Tigli L, Amidani D, Catozzi C, Ricci F, Salomone F, Pieraccini G, Pioselli B, Mileo V. Sample preparation strategy for the detection of steroid-like compounds using MALDI mass spectrometry imaging: pulmonary distribution of budesonide as a case study. Anal Bioanal Chem. 2021;413:4363–71. https://doi.org/10.1007/S00216-021-03393-6/FIGURES/4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hollerbach A, Ayrton S, Jarmusch A, Cooks RG. Desorption electrospray ionization: methodology and applications. Encyclopedia of Spectroscopy and Spectrometry 2016;401–408. https://doi.org/10.1016/B978-0-12-409547-2.12133-X.

  74. Venter A, Sojka PE, Cooks RG. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem. 2006;78:8549–55. https://doi.org/10.1021/AC0615807/SUPPL_FILE/AC0615807.DOC.

    Article  CAS  PubMed  Google Scholar 

  75. Costa AB, Cooks RG. Simulation of atmospheric transport and droplet–thin film collisions in desorption electrospray ionization. Chem Commun. 2007;38:3915–3917. https://doi.org/10.1039/B710511H.

  76. Morelato M, Beavis A, Kirkbride P, Roux C. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int. 2013;226:10–21.

    Article  CAS  PubMed  Google Scholar 

  77. Wójtowicz A, Wietecha-Posluszny R. DESI-MS analysis of human fluids and tissues for forensic applications. Appl Phys A. 2019;125:312. https://doi.org/10.1007/s00339-019-2564-2.

  78. Campbell DI, Ferreira CR, Eberlin LS, Cooks RG. Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal Bioanal Chem. 2012;404:389–98. https://doi.org/10.1007/S00216-012-6173-6.

    Article  CAS  PubMed  Google Scholar 

  79. Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem. 2014;86:8303–11. https://doi.org/10.1021/ac501937d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tillner J, McKenzie JS, Jones EA, Speller AVM, Walsh JL, Veselkov KA, Bunch J, Takats Z, Gilmore IS. Investigation of the impact of desorption electrospray ionization sprayer geometry on its performance in imaging of biological tissue. Anal Chem. 2016;88:4808–16. https://doi.org/10.1021/acs.analchem.6b00345.

    Article  CAS  PubMed  Google Scholar 

  81. Green FM, Salter TL, Gilmore IS, Stokes P, O'Connor G. The effect of electrospray solvent composition on desorption electrospray ionisation (DESI) efficiency and spatial resolution. Analyst 2010;135:731–737. https://doi.org/10.1039/B924208B.

  82. Cooks RG, Manicke NE, Dill AL, Ifa DR, Eberlin LS, Costa AB, Wang H, Huang G, Ouyang Z. New ionization methods and miniature mass spectrometers for biomedicine: DESI imaging for cancer diagnostics and paper spray ionization for therapeutic drug monitoring. Faraday Discuss. 2011;149:247–67. https://doi.org/10.1039/c005327a.

    Article  CAS  PubMed  Google Scholar 

  83. Wiseman JM, Ifa DR, Andre Venter RGC. Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat Protoc. 2008;3:517–24. https://doi.org/10.1038/nprot.2008.11.

    Article  CAS  PubMed  Google Scholar 

  84. Angelini R, Yutuc E, Wyatt MF, Newton J, Yusuf FA, Griffiths L, Cooze BJ, Assad DE, Frache G, Rao W, Allen LB, Korade Z, Nguyen KTTA, Rathnayake RAC, Cologna SM, Howell OW, Clench MR, Wang Y, Griffiths WJ. Visualizing cholesterol in the brain by on-tissue derivatization and quantitative mass spectrometry imaging. Anal Chem. 2021;93:4932–4943. https://doi.org/10.1021/acs.analchem.0c05399.

  85. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53–68. https://doi.org/10.1016/0168-1176(87)87041-6.

    Article  CAS  Google Scholar 

  86. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3. https://doi.org/10.1002/RCM.1290020802.

    Article  CAS  Google Scholar 

  87. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103:395–426. https://doi.org/10.1021/cr010375i.

  88. Kobylis P, Stepnowski P, Caban M. Review of the applicability of ionic liquid matrices for the quantification of small molecules by MALDI MS. Microchem J. 2021;164:105983. https://doi.org/10.1016/J.MICROC.2021.105983.

  89. Wu N, Olechwier AM, Brunner C, Edwards PC, Tsai CJ, Tate CG, Schertler GFX, Schneider G, Deupi X, Zenobi R, Ma P. High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs. Proc Natl Acad Sci U S A. 2021;118:e2024146118. https://doi.org/10.1073/PNAS.2024146118/SUPPL_FILE/PNAS.2024146118.SAPP.PDF.

  90. Hosseini S, Martinez-Chapa SO. Fundamentals of MALDI-ToF-MS analysis. 1st ed. Springer Singapore; 2017. https://doi.org/10.1007/978-981-10-2356-9.

  91. Kokesch-Himmelreich J, Wittek O, Race AM, Rakete S, Schlicht C, Busch U, Römpp A. MALDI mass spectrometry imaging: from constituents in fresh food to ingredients, contaminants and additives in processed food. Food Chem. 2022;385:132529. https://doi.org/10.1016/J.FOODCHEM.2022.132529.

  92. Montini L, Crocoll C, Gleadow RM, Motawia MS, Janfelt C, Bjarnholt N. Matrix-assisted laser desorption/ionization-mass spectrometry imaging of metabolites during Sorghum germination. Plant Physiol. 2020;183:925–42. https://doi.org/10.1104/PP.19.01357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gu H, Ma K, Zhao W, Qiu L, Xu W. A general purpose MALDI matrix for the analyses of small organic, peptide and protein molecules. Analyst. 2021;146:4080–6. https://doi.org/10.1039/D1AN00474C.

    Article  CAS  PubMed  Google Scholar 

  94. Angelini R, Vitale R, Patil VA, Cocco T, Ludwig B, Greenberg ML, Corcelli A. Lipidomics of intact mitochondria by MALDI-TOF/MS. J Lipid Res. 2012;53:1417–25. https://doi.org/10.1194/JLR.D026203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ellis SR, Brown SH, in het Panhuis M, Blanksby SJ, Mitchell TW. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res. 2013;52:329–353. https://doi.org/10.1016/J.PLIPRES.2013.04.005.

  96. Lee PY, Yeoh Y, Omar N, Pung YF, Lim LC, Low TY. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research. Crit Rev Clin Lab Sci. 2021;58:513–529. https://doi.org/10.1080/10408363.2021.1942781.

  97. Garate J, Fernández R, Lage S, Bestard-Escalas J, Lopez DH, Reigada R, Khorrami S, Ginard D, Reyes J, Amengual I, Barceló-Coblijn G, Fernández JA. Imaging mass spectrometry increased resolution using 2-mercaptobenzothiazole and 2,5-diaminonaphtalene matrices: application to lipid distribution in human colon. Anal Bioanal Chem. 2015;407:4697–708. https://doi.org/10.1007/S00216-015-8673-7.

    Article  CAS  PubMed  Google Scholar 

  98. de Almeida CM, Pinto FE, dos Santos NA, de Souza LM, Merlo BB, Thompson CJ, Romão W. Designer drugs analysis by LDI(+), MALDI(+) and MALDI(+) imaging coupled to FT-ICR MS. Microchem J. 2019;149:104002. https://doi.org/10.1016/J.MICROC.2019.104002.

  99. Hillenkamp F, Peter-Katalinic J. MALDI MS : a practical guide to instrumentation, methods, and applications. 2013;477.

  100. Gemperline E, Rawson S, Li L. Optimization and comparison of multiple MALDI matrix application methods for small molecule mass spectrometric imaging. Anal Chem. 2014;86:10030. https://doi.org/10.1021/AC5028534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Seeley EH, Caprioli RM. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 2011;29:136. https://doi.org/10.1016/J.TIBTECH.2010.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morosi L, Matteo C, Meroni M, Ceruti T, Fuso Nerini I, Bello E, Frapolli R, D’Incalci M, Zucchetti M, Davoli E. Quantitative measurement of pioglitazone in neoplastic and normal tissues by AP-MALDI mass spectrometry imaging. Talanta 2022;237:122918. https://doi.org/10.1016/j.talanta.2021.122918.

  103. Handler AM, Pommergaard Pedersen G, Troensegaard Nielsen K, Janfelt C, Just Pedersen A, Clench MR. Quantitative MALDI mass spectrometry imaging for exploring cutaneous drug delivery of tofacitinib in human skin. Eur J Pharm Biopharm. 2021;159:1–10. https://doi.org/10.1016/j.ejpb.2020.12.008.

    Article  CAS  PubMed  Google Scholar 

  104. Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – a tutorial review. Biochim Biophys Acta (BBA) Proteins Proteom. 2017;1865:726–739. https://doi.org/10.1016/j.bbapap.2016.12.011.

  105. Porta T, Lesur A, Varesio E, Hopfgartner G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging? Anal Bioanal Chem. 2015;407:2177–87. https://doi.org/10.1007/s00216-014-8315-5.

    Article  CAS  PubMed  Google Scholar 

  106. Hankin JA, Murphy RC. Relationship between MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal Chem. 2010;82:8476–84. https://doi.org/10.1021/ac101079v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ellis SR, Bruinen AL, Heeren RMA. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem. 2014;406:1275–89. https://doi.org/10.1007/s00216-013-7478-9.

    Article  CAS  PubMed  Google Scholar 

  108. Tobias F, Hummon AB. Considerations for MALDI-based quantitative mass spectrometry imaging studies. J Proteome Res. 2020;19:3620–30. https://doi.org/10.1021/acs.jproteome.0c00443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Groseclose MR, Castellino S. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem. 2013;85:10099–106. https://doi.org/10.1021/ac400892z.

    Article  CAS  PubMed  Google Scholar 

  110. Aichler M, Walch A. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest. 2015;95:422–31. https://doi.org/10.1038/labinvest.2014.156.

    Article  CAS  PubMed  Google Scholar 

  111. Lee PY, Yeoh Y, Omar N, Pung Y-F, Lim LC, Low TY. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research. Crit Rev Clin Lab Sci. 2021;58:513–29. https://doi.org/10.1080/10408363.2021.1942781.

    Article  CAS  PubMed  Google Scholar 

  112. Bonnel D, Legouffe R, Willand N, Baulard A, Hamm G, Deprez B, Stauber J. MALDI imaging techniques dedicated to drug-distribution studies. Bioanalysis. 2011;3:1399–406. https://doi.org/10.4155/bio.11.88.

    Article  CAS  PubMed  Google Scholar 

  113. Karlsson O, Hanrieder J. Imaging mass spectrometry in drug development and toxicology. Arch Toxicol. 2017;91:2283–94. https://doi.org/10.1007/s00204-016-1905-6.

    Article  CAS  PubMed  Google Scholar 

  114. Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol. 2022;201:115080. https://doi.org/10.1016/j.bcp.2022.115080.

  115. LaBonia GJ, Lockwood SY, Heller AA, Spence DM, Hummon AB. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics. 2016;16:1814–21. https://doi.org/10.1002/pmic.201500524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tang W, Chen J, Zhou J, Ge J, Zhang Y, Li P, Li B. Quantitative MALDI imaging of spatial distributions and dynamic changes of tetrandrine in multiple organs of rats. Theranostics. 2019;9:932–44. https://doi.org/10.7150/thno.30408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Islam A, Sakamoto T, Zhai Q, Rahman MdM, Al MM, Takahashi Y, Kahyo T, Setou M. Application of AP-MALDI imaging mass microscope for the rapid mapping of imipramine, chloroquine, and their metabolites in the kidney and brain of wild-type mice. Pharmaceuticals. 2022;15:1314. https://doi.org/10.3390/ph15111314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90:240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  CAS  PubMed  Google Scholar 

  119. Kreutzer L, Weber P, Heider T, Heikenwälder M, Riedl T, Baumeister P, Klauschen F, Belka C, Walch A, Zitzelsberger H, Hess J, Unger K. Simultaneous metabolite MALDI-MSI, whole exome and transcriptome analysis from formalin-fixed paraffin-embedded tissue sections. Lab Invest. 2022;102:1400–5. https://doi.org/10.1038/s41374-022-00829-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Haque MIU, Mukherjee D, Stopka SA, Agar NYR, Hinkle J, Ovchinnikova OS. Deep learning on multimodal chemical and whole slide imaging data for predicting prostate cancer directly from tissue images. J Am Soc Mass Spectrom. 2023;34:227–35. https://doi.org/10.1021/jasms.2c00254.

    Article  CAS  PubMed  Google Scholar 

  121. Schubert KO, Weiland F, Baune BT, Hoffmann P. The use of MALDI-MSI in the investigation of psychiatric and neurodegenerative disorders: a review. Proteomics. 2016;16:1747–58. https://doi.org/10.1002/pmic.201500460.

    Article  CAS  PubMed  Google Scholar 

  122. Fournier I, Wisztorski M, Salzet M. Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev Proteomics. 2008;5:413–24. https://doi.org/10.1586/14789450.5.3.413.

    Article  CAS  PubMed  Google Scholar 

  123. Fernández-Vega A, Chicano-Gálvez E, Prentice BM, Anderson D, Priego-Capote F, López-Bascón MA, Calderón-Santiago M, Avendaño MS, Guzmán-Ruiz R, Tena-Sempere M, Fernández JA, Caprioli RM, Malagón MM. Optimization of a MALDI-imaging protocol for studying adipose tissue-associated disorders. Talanta 2020;219. https://doi.org/10.1016/j.talanta.2020.121184.

  124. Pirman DA, Reich RF, Kiss A, Heeren RMA, Yost RA. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem. 2013;85:1081–9. https://doi.org/10.1021/ac302960j.

    Article  CAS  PubMed  Google Scholar 

  125. Dewez F, De Pauw E, Heeren RMA, Balluff B. Multilabel per-pixel quantitation in mass spectrometry imaging. Anal Chem. 2021;93:1393–400. https://doi.org/10.1021/acs.analchem.0c03186.

    Article  CAS  PubMed  Google Scholar 

  126. Bednařík A, Machálková M, Moskovets E, Coufalíková K, Krásenský P, Houška P, Kroupa J, Navrátilová J, Šmarda J, Preisler J. MALDI MS imaging at acquisition rates exceeding 100 pixels per second. J Am Soc Mass Spectrom. 2019;30:289–98. https://doi.org/10.1007/s13361-018-2078-8.

    Article  CAS  PubMed  Google Scholar 

  127. Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu A-N, Darie CC, Petre BA. Applications of MALDI-MS/MS-based proteomics in biomedical research. Molecules. 2022;27:6196. https://doi.org/10.3390/molecules27196196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. TrAC Trends Anal Chem.2022;157:116809. https://doi.org/10.1016/j.trac.2022.116809.

  129. Niehaus M, Soltwisch J, Belov ME, Dreisewerd K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods. 2019;16:925–31. https://doi.org/10.1038/s41592-019-0536-2.

    Article  CAS  PubMed  Google Scholar 

  130. McMillen JC, Fincher JA, Klein DR, Spraggins JM, Caprioli RM. Effect of MALDI matrices on lipid analyses of biological tissues using MALDI-2 postionization mass spectrometry. J Mass Spectrom. 2020;55:e4663. https://doi.org/10.1002/jms.4663.

  131. Bowman AP, Bogie JFJ, Hendriks JJA, Haidar M, Belov M, Heeren RMA, Ellis SR. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Anal Bioanal Chem. 2020;412:2277–89. https://doi.org/10.1007/s00216-019-02290-3.

    Article  CAS  PubMed  Google Scholar 

  132. Zhou Q, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. https://doi.org/10.1007/s00216-020-03023-7/Published.

  133. Iwama T, Kano K, Saigusa D, Ekroos K, van Echten-Deckert G, Vogt J, Aoki J. Development of an on-tissue derivatization method for MALDI mass spectrometry imaging of bioactive lipids containing phosphate monoester using Phos-tag. Anal Chem. 2021;93:3867–75. https://doi.org/10.1021/acs.analchem.0c04479.

    Article  CAS  PubMed  Google Scholar 

  134. Zecchi R, Franceschi P, Tigli L, Amidani D, Catozzi C, Ricci F, Salomone F, Pieraccini G, Pioselli B, Mileo V. Sample preparation strategy for the detection of steroid-like compounds using MALDI mass spectrometry imaging: pulmonary distribution of budesonide as a case study. https://doi.org/10.1007/s00216-021-03393-6.

  135. Qiao Z, Lissel F. MALDI matrices for the analysis of low molecular weight compounds: rational design, challenges and perspectives. Chem Asian J. 2021;16:868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ogrinc Potočnik N, Porta T, Becker M, Heeren RMA, Ellis SR. Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam. Rapid Commun Mass Spectrom. 2015;29:2195–203. https://doi.org/10.1002/rcm.7379.

    Article  CAS  PubMed  Google Scholar 

  137. Shariatgorji M, Nilsson A, Källback P, Karlsson O, Zhang X, Svenningsson P, Andren PE. Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines. J Am Soc Mass Spectrom. 2015;26:934–9. https://doi.org/10.1007/s13361-015-1119-9.

    Article  CAS  PubMed  Google Scholar 

  138. Robichaud G, A. Barry J, P. Garrard K, C. Muddiman D. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom. 2012;24:92–100. https://doi.org/10.1007/s13361-012-0505-9.

  139. Bemis KD, Harry A, Eberlin LS, Ferreira C, Van De Ven SM, Mallick P, Stolowitz M, Vitek O. Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics. 2015;31:2418–20. https://doi.org/10.1093/bioinformatics/btv146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Parry RM, Galhena AS, Gamage CM, Bennett RV, Wang MD, Fernández FM. OmniSpect: an Open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images. J Am Soc Mass Spectrom. 2013;24:646–649. https://doi.org/10.1007/s13361-012-0572-y.

  141. Race AM, Palmer AD, Dexter A, Steven RT, Styles IB, Bunch J. SpectralAnalysis: software for the masses. Anal Chem. 2016;88:9451–9458. https://doi.org/10.1021/acs.analchem.6b01643.

  142. Rübel O, Greiner A, Cholia S, Louie K, Bethel EW, Northen TR, Bowen BP. OpenMSI: a high-performance web-based platform for mass spectrometry imaging. Anal Chem. 2013;85:10354–10361. https://doi.org/10.1021/ac402540a.

  143. Klinkert I, Chughtai K, Ellis SR, Heeren RMA. Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int J Mass Spectrom. 2014;362:40–7. https://doi.org/10.1016/j.ijms.2013.12.012.

    Article  CAS  Google Scholar 

  144. Källback P, Shariatgorji M, Nilsson A, Andrén PE. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteomics. 2012;75:4941–51. https://doi.org/10.1016/j.jprot.2012.07.034.

    Article  CAS  PubMed  Google Scholar 

  145. Wang HYJ, Huang CY, Wei KC, Hung KC. A mass spectrometry imaging and lipidomic investigation reveals aberrant lipid metabolism in the orthotopic mouse glioma. J Lipid Res. 2022;63. https://doi.org/10.1016/j.jlr.2022.100304.

  146. Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D, Tarasov A, Kovalev V, Fuchser J, Nikolenko S, Pineau C, Becker M, Alexandrov T. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Methods. 2016;14:57–60. https://doi.org/10.1038/nmeth.4072.

    Article  CAS  PubMed  Google Scholar 

  147. Pang Z, Chong J, Zhou G, De Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PÉ, Li S, Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–96. https://doi.org/10.1093/nar/gkab382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pang X, Gao S, Ga M, Zhang J, Luo Z, Chen Y, Zhang R, He J, Abliz Z. Mapping metabolic networks in the brain by ambient mass spectrometry imaging and metabolomics. Anal Chem. 2021;93:6746–54. https://doi.org/10.1021/acs.analchem.1c00467.

    Article  CAS  PubMed  Google Scholar 

  149. He J, Huang L, Tian R, Li T, Sun C, Song X, Lv Y, Luo Z, Li X, Abliz Z. MassImager: a software for interactive and in-depth analysis of mass spectrometry imaging data. Anal Chim Acta. 2018;1015:50–7. https://doi.org/10.1016/j.aca.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boniek Gontijo Vaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, L.Í.L., Bernardo, R.A., Martins, R.O. et al. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 415, 4125–4145 (2023). https://doi.org/10.1007/s00216-023-04783-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04783-8

Keywords

Navigation