Skip to main content
Log in

A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry imaging (MSI) has evolved into a valuable tool across many fields of chemistry, biology, and medicine. However, arguably its greatest disadvantage is the difficulty in acquiring quantitative data regarding the surface concentration of the analyte(s) of interest. These difficulties largely arise from the high dependence of the ion signal on the localized chemical and morphological environment and the difficulties associated with calibrating such signals. The development of quantitative MSI approaches would correspond to a giant leap forward for the field, particularly for the biomedical and pharmaceutical fields, and is thus a highly active area of current research. In this review, we outline the current progress being made in the development and application of quantitative MSI workflows with a focus on biomedical applications. Particular emphasis is placed on the various strategies used for both signal calibration and correcting for various ion suppression effects that are invariably present in any MSI study. In addition, the difficulties in validating quantitative-MSI data on a pixel-by-pixel basis are highlighted.

Determining localised surface concentrations with quantitative imaging mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Passarelli MK, Winograd N (2011) Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim Biophys Acta Mol Cell Biol Lipids 1811(11):976–990. doi:10.1016/j.bbalip.2011.05.007

    CAS  Google Scholar 

  2. Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110(5):3237–3277. doi:10.1021/cr100012c

    CAS  Google Scholar 

  3. Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113 (4):2309-2342. doi:10.1021/cr3004295

    CAS  Google Scholar 

  4. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643. doi:10.1002/mas.20124

    CAS  Google Scholar 

  5. Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteome 75(16):4999–5013. doi:10.1016/j.jprot.2012.07.028

    CAS  Google Scholar 

  6. Solon E, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26. doi:10.1208/s12248-009-9158-4

    CAS  Google Scholar 

  7. Solon EG, Kraus L (2001) Quantitative whole-body autoradiography in the pharmaceutical industry: survey results on study design, methods, and regulatory compliance. J Pharmacol Toxicol Methods 46(2):73–81. doi:10.1016/S1056-8719(02)00161-2

    CAS  Google Scholar 

  8. Lee MS, Kerns EH (1999) LC/MS applications in drug development. Mass Spectrom Rev 18(3/4):187–279. doi:10.1002/(SICI)1098-2787(1999)18:3/4<187::AID-MAS2>3.0.CO;2-K

    CAS  Google Scholar 

  9. Taylor PJ (2005) Matrix effects: the achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38(4):328–334. doi:10.1016/j.clinbiochem.2004.11.007

    CAS  Google Scholar 

  10. Heeren RMA, Kükrer-Kaletaş B, Taban IM, MacAleese L, McDonnell LA (2008) Quality of surface: the influence of sample preparation on MS-based biomolecular tissue imaging with MALDI-MS and (ME-)SIMS. Appl Surf Sci 255(4):1289–1297. doi:10.1016/j.apsusc.2008.05.243

    CAS  Google Scholar 

  11. Goodwin RJA (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteome 75(16):4893–4911. doi:10.1016/j.jprot.2012.04.012

    CAS  Google Scholar 

  12. Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260(2/3):195–202. doi:10.1016/j.ijms.2006.10.007

    CAS  Google Scholar 

  13. Hunag L (2002) Time-of-flight secondary ion mass spectrometry: quantitative approaches. Trends Vac Sci Technol 5:31–43

    Google Scholar 

  14. Stevie FA, Griffis DP (2008) Quantification in dynamic SIMS: current status and future needs. Appl Surf Sci 255(4):1364–1367. doi:10.1016/j.apsusc.2008.05.041

    CAS  Google Scholar 

  15. Werner HW (1980) Quantitative secondary ion mass spectrometry: a review. Surf Interface Anal 2(2):56–74. doi:10.1002/sia.740020205

    CAS  Google Scholar 

  16. Deng RC, Williams P (1989) Factors affecting precision and accuracy in quantitative analysis by secondary ion mass spectrometry. Anal Chem 61(17):1946–1948. doi:10.1021/ac00192a035

    CAS  Google Scholar 

  17. Seeley EH, Caprioli RM (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci 105 (47):18126-18131. doi:10.1073/pnas.0801374105

    CAS  Google Scholar 

  18. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760. doi:10.1021/ac970888i

    CAS  Google Scholar 

  19. Stoeckli M, Schhaaf TG, Chaurand P, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Methods 7:493–496. doi:10.1038/86573

    CAS  Google Scholar 

  20. Chaurand P, Schwartz SA, Caprioli RM (2002) Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. Curr Opin Chem Biol 6(5):676–681. doi:10.1016/S1367-5931(02)00370-8

    CAS  Google Scholar 

  21. Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (2006) New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5(11):2889–2900. doi:10.1021/pr060346u

    CAS  Google Scholar 

  22. Greer T, Sturm R, Li L (2011) Mass spectrometry imaging for drugs and metabolites. J Proteom 74(12):2617–2631. doi:10.1016/j.jprot.2011.03.032

    CAS  Google Scholar 

  23. Zemski Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111(10):6491–6512. doi:10.1021/cr200280p

    CAS  Google Scholar 

  24. Touboul D, Brunelle A, Laprevote O (2011) Mass spectrometry imaging: towards a lipid microscope? Biochimie 93(1):113–119. doi:10.1016/j.biochi.2010.05.013

    CAS  Google Scholar 

  25. Sugiura Y, Setou M (2010) Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J NeuroImmune Pharmacol 5(1):31–43. doi:10.1007/s11481-009-9162-6

    Google Scholar 

  26. Trim P, Francese S, Clench M (2009) Imaging mass spectrometry for the assessment of drugs and metabolites in tissue. Bioanalysis 1(2):309–319. doi:10.4155/bio.09.33

    CAS  Google Scholar 

  27. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833. doi:10.1038/nmeth1094

    CAS  Google Scholar 

  28. Walch A, Rauser S, Deininger S-O, Höfler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130(3):421–434. doi:10.1007/s00418-008-0469-9

    CAS  Google Scholar 

  29. Balluff B, Schöne C, Höfler H, Walch A (2011) MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 136(3):227–244. doi:10.1007/s00418-011-0843-x

    CAS  Google Scholar 

  30. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103(2):395–426. doi:10.1021/cr010375i

    CAS  Google Scholar 

  31. Knochenmuss R (2006) Ion formation mechanisms in UV-MALDI. Analyst 131(9):966–986. doi:10.1039/B605646F

    CAS  Google Scholar 

  32. Aerni H-R, Cornett DS, Caprioli RM (2005) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78(3):827–834. doi:10.1021/ac051534r

    Google Scholar 

  33. Chen Y, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, Merrill AH, Sullards MC (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80(8):2780–2788. doi:10.1021/ac702350g

    CAS  Google Scholar 

  34. Baluya DL, Garrett TJ, Yost RA (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem 79(17):6862–6867. doi:10.1021/ac070958d

    CAS  Google Scholar 

  35. Hankin JA, Barkley RM, Murphy RC (2007) Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom 18(9):1646–1652. doi:10.1016/j.jasms.2007.06.010

    CAS  Google Scholar 

  36. Puolitaival S, Burnum K, Cornett DS, Caprioli R (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19(6):882–886. doi:10.1016/j.jasms.2008.02.013

    CAS  Google Scholar 

  37. Li YL, Gross ML (2004) Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 15(12):1833–1837. doi:10.1016/j.jasms.2004.08.011

    CAS  Google Scholar 

  38. Zabet-Moghaddam M, Heinzle E, Tholey A (2004) Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices. Rapid Commun Mass Spectrom 18(2):141–148. doi:10.1002/rcm.1293

    CAS  Google Scholar 

  39. Bonnel D, Franck J, Mériaux C, Salzet M, Fournier I (2013) Ionic matrices pre-spotted matrix-assisted laser desorption/ionization plates for patient maker following in course of treatment, drug titration, and MALDI mass spectrometry imaging. Anal Biochem 434(1):187–198. doi:10.1016/j.ab.2012.10.035

    CAS  Google Scholar 

  40. Goodwin RJA, Scullion P, MacIntyre L, Watson DG, Pitt AR (2010) Use of a solvent-free dry matrix coating for quantitative matrix-assisted laser desorption ionization imaging of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate in rat brain and quantitative analysis of the drug from laser microdissected tissue regions. Anal Chem 82(9):3868–3873. doi:10.1021/ac100398y

    CAS  Google Scholar 

  41. Signor L, Varesio E, Staack RF, Starke V, Richter WF, Hopfgartner G (2007) Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J Mass Spectrom 42(7):900–909. doi:10.1002/jms.1225

    CAS  Google Scholar 

  42. Luxembourg SL, McDonnell LA, Duursma MC, Guo X, Heeren RMA (2003) Effect of local matrix crystal variations in matrix-assisted ionization techniques for mass spectrometry. Anal Chem 75(10):2333–2341. doi:10.1021/ac026434p

    CAS  Google Scholar 

  43. Pachuta SJ, Cooks RG (1987) Mechanisms in molecular SIMS. Chem Rev 87(3):647–669. doi:10.1021/cr00079a009

    CAS  Google Scholar 

  44. Werner HW (1975) The use of secondary ion mass spectrometry in surface analysis. Surf Sci 47(1):301–323. doi:10.1016/0039-6028(75)90297-6

    CAS  Google Scholar 

  45. Vickerman JC (1994) Impact of mass spectrometry in surface analysis. Analyst 119(4):513–523. doi:10.1039/AN9941900513

    CAS  Google Scholar 

  46. Zoriy MV, Becker JS (2007) Imaging of elements in thin cross sections of human brain samples by LA-ICP-MS: a study on reproducibility. Int J Mass Spectrom 264(2/3):175–180. doi:10.1016/j.ijms.2007.04.009

    CAS  Google Scholar 

  47. Pisonero J, Fernandez B, Gunther D (2009) Critical revision of GD-MS, LA-ICP-MS, and SIMS as inorganic mass spectrometric techniques for direct solid analysis. J Anal At Spectrom 24(9):1145–1160. doi:10.1039/b904698d

    CAS  Google Scholar 

  48. Hare D, Austin C, Doble P (2012) Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst 137(7):1527–1537. doi:10.1039/C2AN15792F

    CAS  Google Scholar 

  49. Sabine Becker J (2013) Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments. J Mass Spectrom 48(2):255–268. doi:10.1002/jms.3168

    CAS  Google Scholar 

  50. Becker JS, Matusch A, Becker JS, Wu B, Palm C, Becker AJ, Salber D (2011) Mass spectrometric imaging (MSI) of metals using advanced BrainMet techniques for biomedical research. Int J Mass Spectrom 307(1/3):3–15. doi:10.1016/j.ijms.2011.01.015

    CAS  Google Scholar 

  51. Austin C, Fryer F, Lear J, Bishop D, Hare D, Rawling T, Kirkup L, McDonagh A, Doble P (2011) Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA-ICP-MS. J Anal At Spectrom 26(7):1494–1501. doi:10.1039/C0JA00267D

    CAS  Google Scholar 

  52. Konz I, Fernández B, Fernández ML, Pereiro R, Sanz-Medel A (2012) Laser ablation ICP-MS for quantitative biomedical applications. Anal Bioanal Chem 403(8):2113–2125. doi:10.1007/s00216-012-6023-6

    CAS  Google Scholar 

  53. Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473. doi:10.1126/science.1104404

    Google Scholar 

  54. Monge ME, Harris GA, Dwivedi P, Fernández FM (2013) Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev 113 (4):2269-2308. doi:10.1021/cr300309q

    CAS  Google Scholar 

  55. Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom 43(9):1161–1180. doi:10.1002/jms.1440

    Google Scholar 

  56. Harris GA, Galhena AS, Fernandez FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83(12):4508–4538. doi:10.1021/ac200918u

    CAS  Google Scholar 

  57. Huang M-Z, Yuan C-H, Cheng S-C, Cho Y-T, Shiea J (2010) Ambient ionization mass spectrometry. Annu Rev Anal Chem 3(1):43–65. doi:10.1146/annurev.anchem.111808.073702

    Google Scholar 

  58. Ellis SR, Wu C, Deeley JM, Zhu X, Truscott RJW, in het Panhuis M, Cooks RG, Mitchell TW, Blanksby SJ (2010) Imaging of human lens lipids by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 21(12):2095–2104. doi:10.1016/j.jasms.2010.09.003

    CAS  Google Scholar 

  59. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG (2011) Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. ChemBioChem 12(14):2129–2132. doi:10.1002/cbic.201100411

    CAS  Google Scholar 

  60. Källback P, Shariatgorji M, Nilsson A, Andrén PE (2012) Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteom 75(16):4941–4951. doi:10.1016/j.jprot.2012.07.034

    Google Scholar 

  61. Chandra S (2010) Quantitative imaging of chemical composition in single cells by secondary ion mass spectrometry: cisplatin affects calcium stores in renal epithelial cells. In: Rubakhin SS, Sweedler JV (eds) Mass spectrometry imaging, vol 656. Methods in molecular biology. Humana Press: pp 113–130. doi:10.1007/978-1-60761-746-4_6

  62. Dérue C, Gibouin D, Lefebvre F, Studer D, Thellier M, Ripoll C (2006) Relative sensitivity factors of inorganic cations in frozen-hydrated standards in secondary ion MS analysis. Anal Chem 78(8):2471–2477. doi:10.1021/ac051518u

    Google Scholar 

  63. Smith DR, Chandra S, Barth RF, Yang W, Joel DD, Coderre JA (2001) Quantitative imaging and microlocalization of boron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy: relevance to neutron capture therapy. Cancer Res 61(22):8179–8187

    CAS  Google Scholar 

  64. Candy JM, Oakley AE, Mountfort SA, Taylor GA, Morris CM, Bishop HE, Edwardson JA (1992) The imaging and quantification of aluminium in the human brain using dynamic secondary ion mass spectrometry (SIMS). Biol Cell 74(1):109–118. doi:10.1016/0248-4900(92)90016-t

    CAS  Google Scholar 

  65. Ausserer WA, Ling YC, Chandra S, Morrison GH (1989) Quantitative imaging of boron, calcium, magnesium, potassium, and sodium distributions in cultured cells with ion microscopy. Anal Chem 61(24):2690–2695. doi:10.1021/ac00199a002

    CAS  Google Scholar 

  66. Chandra S, Tjarks W, Lorey DR, Barth RF (2008) Quantitative subcellular imaging of boron compounds in individual mitotic and interphase human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J Microsc 229(1):92–103. doi:10.1111/j.1365-2818.2007.01869.x

    CAS  Google Scholar 

  67. Chandra S, Kabalka GW, Lorey DR, Smith DR, Coderre JA (2002) Imaging of fluorine and boron from fluorinated boronophenylalanine in the same cell at organelle resolution by correlative ion microscopy and confocal laser scanning microscopy. Clin Cancer Res 8(8):2675–2683

    CAS  Google Scholar 

  68. Harris WC, Chandra S, Morrison GH (1983) Ion implantation for quantitative ion microscopy of biological soft tissue. Anal Chem 55(12):1959–1963. doi:10.1021/ac00262a029

    CAS  Google Scholar 

  69. Vismeh R, Waldon DJ, Teffera Y, Zhao Z (2012) Localization and quantification of drugs in animal tissues by use of desorption electrospray ionization mass spectrometry imaging. Anal Chem 84(12):5439–5445. doi:10.1021/ac3011654

    CAS  Google Scholar 

  70. Pirman DA, Yost RA (2011) Quantitative tandem mass spectrometric imaging of endogenous acetyl-l-carnitine from piglet brain tissue using an internal standard. Anal Chem 83(22):8575–8581. doi:10.1021/ac201949b

    CAS  Google Scholar 

  71. Pirman DA, Kiss A, Heeren RMA, Yost RA (2012) Identifying tissue-specific signal variation in MALDI mass spectrometric imaging by use of an internal standard. Anal Chem 85(2):1090–1096. doi:10.1021/ac3029618

    Google Scholar 

  72. Pirman DA, Reich RF, Kiss A, Heeren RMA, Yost RA (2012) Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem 85(2):1081–1089. doi:10.1021/ac302960j

    Google Scholar 

  73. Nilsson A, Fehniger TE, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, Andrén PE (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS ONE 5(7):e11411. doi:10.1371/journal.pone.0011411

    Google Scholar 

  74. Clemis EJ, Smith DS, Camenzind AG, Danell RM, Parker CE, Borchers CH (2012) Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem 84(8):3514–3522. doi:10.1021/ac202875d

    CAS  Google Scholar 

  75. Hamm G, Bonnel D, Legouffe R, Pamelard F, Delbos J-M, Bouzom F, Stauber J (2012) Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteom 75(16):4952–4961. doi:10.1016/j.jprot.2012.07.035

    CAS  Google Scholar 

  76. Koeniger SL, Talaty N, Luo Y, Ready D, Voorbach M, Seifert T, Cepa S, Fagerland JA, Bouska J, Buck W, Johnson RW, Spanton S (2011) A quantitation method for mass spectrometry imaging. Rapid Commun Mass Spectrom 25(4):503–510. doi:10.1002/rcm.4891

    CAS  Google Scholar 

  77. Groseclose MR, Castellino S (2013) A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem 85 (21):10099-10106. doi:10.1021/ac400892z

    CAS  Google Scholar 

  78. Kindness A, Sekaran CN, Feldmann J (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. Clin Chem 49(11):1916–1923. doi:10.1373/clinchem.2003.022046

    CAS  Google Scholar 

  79. Jackson B, Harper S, Smith L, Flinn J (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Anal Bioanal Chem 384(4):951–957. doi:10.1007/s00216-005-0264-6

    CAS  Google Scholar 

  80. Feldmann J, Kindness A, Ek P (2002) Laser ablation of soft tissue using a cryogenically cooled ablation cell. J Anal At Spectrom 17(8):813–818. doi:10.1039/B201960D

    CAS  Google Scholar 

  81. Hare DJ, George JL, Grimm R, Wilkins S, Adlard PA, Cherny RA, Bush AI, Finkelstein DI, Doble P (2010) Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn, and P in a 6-hydroxydopamine lesioned mouse brain. Metallomics 2(11):745–753. doi:10.1039/c0mt00039f

    CAS  Google Scholar 

  82. Matusch A, Bauer A, Becker JS (2011) Element imaging in formalin fixed slices of human mesencephalon. Int J Mass Spectrom 307(1/3):240–244. doi:10.1016/j.ijms.2011.03.006

    CAS  Google Scholar 

  83. Matusch A, Depboylu C, Palm C, Wu B, Höglinger G, Schäfer MH, Becker JS (2010) Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Am Soc Mass Spectrom 21(1):161–171. doi:10.1016/j.jasms.2009.09.022

    CAS  Google Scholar 

  84. Austin C, Hare D, Rawling T, McDonagh AM, Doble P (2010) Quantification method for elemental bio-imaging by LA-ICP-MS using metal spiked PMMA films. J Anal At Spectrom 25(5):722–725. doi:10.1039/B911316A

    CAS  Google Scholar 

  85. Becker JS, Zoriy M, Becker JS, Dobrowolska J, Dehnhardt M, Matusch A (2007) Elemental imaging mass spectrometry of thin sections of tissues and analysis of brain proteins in gels by laser ablation inductively coupled plasma mass spectrometry. Phys Status Solidi 4(6):1775–1784. doi:10.1002/pssc.200675226

    CAS  Google Scholar 

  86. Zoriy MV, Dehnhardt M, Matusch A, Becker JS (2008) Comparative imaging of P, S, Fe, Cu, Zn, and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B Atomic Spectrosc 63(3):375–382. doi:10.1016/j.sab.2007.11.030

    Google Scholar 

  87. Dobrowolska J, Dehnhardt M, Matusch A, Zoriy M, Palomero-Gallagher N, Koscielniak P, Zilles K, Becker JS (2008) Quantitative imaging of zinc, copper, and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry. Talanta 74(4):717–723. doi:10.1016/j.talanta.2007.06.051

    CAS  Google Scholar 

  88. Zoriy MV, Dehnhardt M, Reifenberger G, Zilles K, Becker JS (2006) Imaging of Cu, Zn, Pb, and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom 257(1/3):27–33. doi:10.1016/j.ijms.2006.06.005

    CAS  Google Scholar 

  89. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem 84(22):9684–9688. doi:10.1021/ac302639c

    CAS  Google Scholar 

  90. Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77(10):3208–3216. doi:10.1021/ac040184q

    CAS  Google Scholar 

  91. Bellis DJ, Santamaria-Fernandez R (2010) Ink jet patterns as model samples for the development of LA-ICP-SFMS methodology for mapping of elemental distribution with reference to biological samples. J Anal At Spectrom 25(7):957–963. doi:10.1039/B926430B

    CAS  Google Scholar 

  92. Hare D, Austin C, Doble P, Arora M (2011) Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent 39(5):397–403. doi:10.1016/j.jdent.2011.03.004

    CAS  Google Scholar 

  93. M-M P, Weiskirchen R, Gassler N, Bosserhoff AK, Becker JS (2013) Novel bioimaging techniques of metals by laser ablation inductively coupled plasma mass spectrometry for diagnosis of fibrotic and cirrhotic liver disorders. PLoS ONE 8(3):e58702. doi:10.1371/journal.pone.0058702

    Google Scholar 

  94. Pozebon D, Dressler VL, Mesko MF, Matusch A, Becker JS (2010) Bioimaging of metals in thin mouse brain section by laser ablation inductively coupled plasma mass spectrometry: novel online quantification strategy using aqueous standards. J Anal At Spectrom 25(11):1739–1744. doi:10.1039/c0ja00055h

    CAS  Google Scholar 

  95. Gunther D, Cousin H, Magyar B, Leopold I (1997) Calibration studies on dried aerosols for laser ablation-inductively coupled plasma mass spectrometry. J Anal At Spectrom 12(2):165–170. doi:10.1039/A604531F

    Google Scholar 

  96. Hare D, Reedy B, Grimm R, Wilkins S, Volitakis I, George JL, Cherny RA, Bush AI, Finkelstein DI, Doble P (2009) Quantitative elemental bio-imaging of Mn, Fe, Cu, and Zn in 6-hydroxydopamine induced Parkinsonism mouse models. Metallomics 1(1):53–58. doi:10.1039/b816188g

    CAS  Google Scholar 

  97. Dressler VL, Pozebon D, Mesko MF, Matusch A, Kumtabtim U, Wu B, Sabine Becker J (2010) Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry. Talanta 82(5):1770–1777. doi:10.1016/j.talanta.2010.07.065

    CAS  Google Scholar 

  98. Sussulini A, Wiener E, Marnitz T, Wu B, Müller B, Hamm B, Sabine Becker J (2013) Quantitative imaging of the tissue contrast agent [Gd(DTPA)]2− in articular cartilage by laser ablation inductively coupled plasma mass spectrometry. Contrast Media Mol Imaging 8(2):204–209. doi:10.1002/cmmi.1509

    CAS  Google Scholar 

  99. Boulyga SF, Desideri D, Meli MA, Testa C, Becker JS (2003) Plutonium and americium determination in mosses by laser ablation ICP-MS combined with isotope dilution technique. Int J Mass Spectrom 226(3):329–339. doi:10.1016/S1387-3806(03)00024-1

    CAS  Google Scholar 

  100. Arlinghaus HF, Kriegeskotte C, Fartmann M, Wittig A, Sauerwein W, Lipinsky D (2006) Mass spectrometric characterization of elements and molecules in cell cultures and tissues. Appl Surf Sci 252(19):6941–6948. doi:10.1016/j.apsusc.2006.02.186

    CAS  Google Scholar 

  101. Fartmann M, Kriegeskotte C, Dambach S, Wittig A, Sauerwein W, Arlinghaus HF (2004) Quantitative imaging of atomic and molecular species in cancer cell cultures with TOF-SIMS and laser-SNMS. Appl Surf Sci 231/232(0):428–431. doi:10.1016/j.apsusc.2004.03.160

    Google Scholar 

  102. Strick R, Strissel PL, Gavrilov K, Levi-Setti R (2001) Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol 155(6):899–910. doi:10.1083/jcb.200105026

    CAS  Google Scholar 

  103. Jackson LM, Hue JJ, Winograd N (2013) Quantitative detection of purines in biologically relevant films with TOF-secondary ion mass spectrometry. Surf Interface Anal 45(1):237–239. doi:10.1002/sia.5098

    CAS  Google Scholar 

  104. Gillen G, Hues SM (1993) Doped gelatin films as a model matrix for molecular secondary ion mass spectrometry studies of biological soft tissue. J Am Soc Mass Spectrom 4(5):419–423. doi:10.1016/1044-0305(93)85007-K

    CAS  Google Scholar 

  105. Tibi M, Heumann KG (2003) Isotope dilution mass spectrometry as a calibration method for the analysis of trace elements in powder samples by LA-ICP-MS. J Anal At Spectrom 18(9):1076–1081. doi:10.1039/B301835K

    CAS  Google Scholar 

  106. Pickhardt C, Izmer AV, Zoriy MV, Schaumlöffel D, Sabine Becker J (2006) On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber. Int J Mass Spectrom 248(3):136–141. doi:10.1016/j.ijms.2005.11.001

    CAS  Google Scholar 

  107. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63(1):185–198. doi:10.1146/annurev-med-040210-162544

    CAS  Google Scholar 

  108. Aeschliman DB, Bajic SJ, Baldwin DP, Houk RS (2003) Spatially-resolved analysis of solids by laser ablation-inductively coupled plasma-mass spectrometry: trace elemental quantification without matrix-matched solid standards. J Anal At Spectrom 18(8):872–877. doi:10.1039/B205683F

    CAS  Google Scholar 

  109. Mitsuma T, Adachi K, Mukoyama M, Ohsugi K, Ando K (1988) Concentrations of thyrotropin-releasing hormone and Substance P are increased in several areas of the central nervous system of shambling mutant mice. Neurochem Int 13(2):261–264. doi:10.1016/0197-0186(88)90063-0

    CAS  Google Scholar 

  110. Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, Adams SP, Yost RA, Sanders M (2007) Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods 55(3):279–288. doi:10.1016/j.vascn.2006.11.004

    CAS  Google Scholar 

  111. Kertesz V, Van Berkel GJ (2010) Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom 45(3):252–260. doi:10.1002/jms.1709

    CAS  Google Scholar 

  112. Van Berkel GJ, Kertesz V, Koeplinger KA, Vavrek M, Kong A-NT (2008) Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom 43(4):500–508. doi:10.1002/jms.1340

    Google Scholar 

  113. McLean JA, Ridenour WB, Caprioli RM (2007) Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom 42(8):1099–1105. doi:10.1002/jms.1254

    CAS  Google Scholar 

  114. Kiss A, Heeren R (2011) Size, weight and position: ion mobility spectrometry and imaging MS combined. Anal Bioanal Chem 399(8):2623–2634. doi:10.1007/s00216-010-4644-1

    CAS  Google Scholar 

  115. Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133(10):1297–1301. doi:10.1039/B806810K

    CAS  Google Scholar 

  116. Imabiotech (2013) Available at: http://quantinetix-software.imabiotech.com/Quantinetix-TM.html. Accessed 23/4/2013

Download references

Acknowledgments

Part of this research is supported by the Dutch Technology Foundation STW, which is the Applied Science Division of NWO, and the Technology Programme of the Ministry of Economic Affairs, Project OTP 11956. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron M. A. Heeren.

Additional information

Published in the topical collection Biomedical Mass Spectrometry with guest editors Mitsutoshi Setou, Toshimitsu Niwa, and Akira Ishii.

Shane R. Ellis and Anne L. Bruinen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, S.R., Bruinen, A.L. & Heeren, R.M.A. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem 406, 1275–1289 (2014). https://doi.org/10.1007/s00216-013-7478-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7478-9

Keywords

Navigation