Skip to main content
Log in

Peptide-derived coordination frameworks for biomimetic and selective separation

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Peptide-derived metal–organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation. The unique biomimetic size-, enantio-, and affinity-selective performances for separation are discussed along with the chemical structures and functions of MOFs and peptides. Updates of the applications of PMOFs in adaptive separation of small molecules, chiral separation of drug molecules, and affinity isolation of bioactive species are summarized. Finally, the promising future and remaining challenges of PMOFs for selective separation of complex biosamples are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Reproduced with permission from ref. [42], © Wiley–VCH 2021. c The coordination of the γ-glutathione analogue and Hg(II) to further assemble into left-handed fibers. Reproduced with permission from ref. [43], © ACS publisher 2018

Fig. 2

Reproduced with permission from ref. [55], © ACS publisher 2017. b Grafting peptides into MOF cavities via in situ solid-phase peptide synthesis. Reproduced with permission from ref. [58], © ACS publisher 2015

Fig. 3

Reproduced with permission from ref. [66], © ACS publisher 2012. b The crystalline frameworks formed by Zn(II) and carnosine (Car) exhibiting selective CO2 adsorption through dispersion interactions. Green, Zn; blue, N; gray, C; red, O; white, H. (c) The structure of human hemoglobin. (d, e) Zn(GGH) with flexible pore conformation in DMSO (d) and DMF (e) for adaptive adsorption of guest molecules. Green, Zn; blue, N; red, O; gray, C

Fig. 4

Reproduced with permission from ref. [67], © Wiley–VCH 2015. b Mirror symmetry of the L-crystal and D-crystal frameworks synthesized from Ag(I) and L-, D-type peptides. Reproduced with permission from ref. [68], © Wiley–VCH 2014. c Binding geometries of (+ , −)-ephedrine (EP) enantiomers in Cu(GHG) (GHG, Gly-His-Gly). Hydrogen bonds are represented as dotted lines. Dark blue, Cu; blue, N; gray, C; red, O; white, H. d Solid-phase extraction separation of EP by using Cu(GHG) as chiral stational phase. The EP racemate before and after passing through the MOF bed was characterizez with high-performance liquid chromatography. Reproduced with permission from ref. [69], © ACS publisher 2017

Fig. 5

Reproduced with permission from ref. [54], © Royal Society of Chemistry 2018. b The percentage of Aβ photooxidation under different conditions identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Reproduced with permission from ref. [73], © Wiley–VCH 2019

Fig. 6

Reproduced with permission from ref. [74], © Elsevier 2020. c Affinity peptide–modified Cu-TCPP for the enrichment and detection of programmed death-ligand 1 (PD-L1) exosomes. d The SPR signal response for exosomes and other interference species with peptide-modified Cu-TCPP as substrates. Reproduced with permission from ref. [76], © Elsevier 2020

Similar content being viewed by others

References

  1. Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev. 2012;112(2):673–4. https://doi.org/10.1021/cr300014x.

    Article  CAS  PubMed  Google Scholar 

  2. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444. https://doi.org/10.1126/science.1230444.

    Article  CAS  PubMed  Google Scholar 

  3. Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O’Keeffe M, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res. 2001;34(4):319–30. https://doi.org/10.1021/ar000034b.

    Article  CAS  PubMed  Google Scholar 

  4. Martí-Gastaldo C, Antypov D, Warren JE, Briggs ME, Chater PA, Wiper PV, et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat Chem. 2014;6(4):343–51. https://doi.org/10.1038/nchem.1871.

    Article  CAS  PubMed  Google Scholar 

  5. Li YM, Zhong HF, Jin YL, Guan B, Yue JL, Zhao R, et al. Metal-organic framework accelerated one-step capture and reduction of palladium to catalytically active nanoparticles. ACS Appl Mater Interfaces. 2022;14(35):40408–17. https://doi.org/10.1021/acsami.2c10594.

    Article  CAS  PubMed  Google Scholar 

  6. Pang JD, Di ZY, Qin JS, Yuan S, Lollar CT, Li JL, et al. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J Am Chem Soc. 2020;142(35):15020–6. https://doi.org/10.1021/jacs.0c05758.

    Article  CAS  PubMed  Google Scholar 

  7. Pei CC, Liu C, Wang Y, Cheng D, Li RX, Shu WK, et al. FeOOH@metal-organic framework core-satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew Chem Int Ed. 2020;59(27):10831–5. https://doi.org/10.1002/anie.202001135.

    Article  CAS  Google Scholar 

  8. Cai PY, Xu M, Meng SS, Lin ZF, Yan TH, Drake HF, et al. Precise spatial-designed metal-organic-framework nanosheets for efficient energy transfer and photocatalysis. Angew Chem Int Ed. 2021;60(52):27258–63. https://doi.org/10.1002/anie.202111594.

    Article  CAS  Google Scholar 

  9. Yang J, Dai HH, Sun Y, Wang LM, Qin G, Zhou JY, et al. 2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem. 2022;414(9):2971–89. https://doi.org/10.1007/s00216-022-03985-w.

    Article  CAS  PubMed  Google Scholar 

  10. Xu M, Cai PY, Meng SS, Yang YH, Zheng DS, Zhang QH, et al. Linker scissoring strategy enables precise shaping of metal-organic frameworks for chromatographic separation. Angew Chem Int Ed. 2022;61(37):e2022077. https://doi.org/10.1002/anie.202207786.

    Article  CAS  Google Scholar 

  11. Zhu YY, Huang YY, Yan TH, Li JL, Li YM, Drake HF, et al. Metal-organic frame-work-based nanoheater with photo-triggered cascade effects for on-demand suppression of cellular thermoresistance and synergistic cancer therapy. Adv Healthc Mater. 2022;11(13):2200004. https://doi.org/10.1002/adhm.202200004.

    Article  CAS  Google Scholar 

  12. Liu TQ, Li Z, Zhang X, Tan HX, Chen ZY, Wu JS, et al. Metal-organic framework-intercalated graphene oxide membranes for selective separation of uranium. Anal Chem. 2021;93(48):16175–83. https://doi.org/10.1021/acs.analchem.1c03982.

    Article  CAS  PubMed  Google Scholar 

  13. Dong JQ, Zhao D. Porous and permutable peptide frameworks. Nat Chem. 2022;14(8):852–4. https://doi.org/10.1038/s41557-022-01011-1.

    Article  CAS  PubMed  Google Scholar 

  14. Schnitzer T, Paenurk E, Trapp N, Gershoni-Poranne R, Wennemers H. Peptide-metal frameworks with metal strings guided by dispersion interactions. J Am Chem Soc. 2021;143(2):644–8. https://doi.org/10.1021/jacs.0c11793.

    Article  CAS  PubMed  Google Scholar 

  15. Dong JQ, Liu Y, Cui Y. Artificial metal-peptide assemblies: bioinspired assembly of peptides and metals through space and across length scales. J Am Chem Soc. 2021;143(42):17316–36. https://doi.org/10.1021/jacs.1c08487.

    Article  CAS  PubMed  Google Scholar 

  16. Cai H, Huang YL, Li D. Biological metal-organic frameworks: structures, host-guest chemistry and bio-applications. Coordin Chem Rev. 2019;378:207–21. https://doi.org/10.1016/j.ccr.2017.12.003.

    Article  CAS  Google Scholar 

  17. Imaz I, Rubio-Martinez M, An J, Sole-Font I, Rosi NL, Maspoch D. Metal-biomolecule frameworks (MBioFs). Chem Commun. 2011;47(26):7287–302. https://doi.org/10.1039/C1CC11202C.

    Article  CAS  Google Scholar 

  18. Rojas S, Devic T, Horcajada P. Metal organic frameworks based on bioactive components. J Mater Chem B. 2017;5(14):2560–73. https://doi.org/10.1039/C6TB03217F.

    Article  CAS  PubMed  Google Scholar 

  19. Lian XZ, Fang Y, Joseph E, Wang Q, Li J, et al. Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev. 2017;46(11):3386–401. https://doi.org/10.1039/C7CS00058H.

    Article  CAS  PubMed  Google Scholar 

  20. An HD, Song J, Wang T, Xiao NN, Zhang ZJ, Cheng P, et al. Metal-organic framework disintegrants: enzyme preparation platforms with boosted activity. Angew Chem Int Ed. 2020;132(38):16907–12. https://doi.org/10.1002/ange.202007827.

    Article  Google Scholar 

  21. Mahmoud AM, Alkahtani SA, El-Wekil MM. Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle-modified copper-based metal organic frameworks. Anal Bioanal Chem. 2022;414(7):2343–53. https://doi.org/10.1007/s00216-021-03852-0.

    Article  CAS  PubMed  Google Scholar 

  22. Huang YL, Qiu PL, Bai JP, Luo D, Lu W, Li D. Exclusive recognition of acetone in a luminescent BioMOF through multiple hydrogen-bonding interactions. Inorg Chem. 2019;58(12):7667–71. https://doi.org/10.1021/acs.inorgchem.9b00873.

    Article  CAS  PubMed  Google Scholar 

  23. Carrillo-Carrión C. Nanoscale metal-organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal Bioanal Chem. 2020;412(1):37–54. https://doi.org/10.1007/s00216-019-02217-y.

    Article  CAS  PubMed  Google Scholar 

  24. Yang LT, Cai PY, Zhang LL, Xu XY, Yakovenko AA, Wang Q, et al. Ligand-directed conformational control over porphyrinic zirconium metal-organic frameworks for size-selective catalysis. J Am Chem Soc. 2021;143(31):12129–37. https://doi.org/10.1021/jacs.1c03960.

    Article  CAS  PubMed  Google Scholar 

  25. Bera S, Mondal S, Xue B, Shimon LJW, Cao Y, Gazit E. Rigid helical-like assemblies from a self-aggregating tripeptide. Nat Mater. 2019;18(5):503–9. https://doi.org/10.1038/s41563-019-0343-2.

    Article  CAS  PubMed  Google Scholar 

  26. Gui SL, Huang YY, Zhu YY, Jin YL, Zhao R. Biomimetic sensing system for tracing Pb2+ distribution in living cells based on the metal-peptide supramolecular assembly. ACS Appl Mater Interfaces. 2019;11(6):5804–11. https://doi.org/10.1021/acsami.8b19076.

    Article  CAS  PubMed  Google Scholar 

  27. Raymond DM, Nilsson BL. Multicomponent peptide assemblies. Chem Soc Rev. 2018;47(10):3659–720. https://doi.org/10.1039/C8CS00115D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang LM, Li MZ, Wang MX, Li LY, Guo MM, Ke YB, et al. Tailored cross-β assemblies to establish the peptides ‘dominos’ for anchoring the undruggable pharmacophores. Angew Chem Int Ed. 2022;61(51):e2022125. https://doi.org/10.1002/anie.202212527.

    Article  CAS  Google Scholar 

  29. Chen Y, Guerin S, Yuan H, O’Donnell J, Xue B, Cazade PA, et al. Guest molecule-mediated energy harvesting in a conformationally sensitive peptide-metal organic framework. J Am Chem Soc. 2022;144(8):3468–76. https://doi.org/10.1021/jacs.1c11750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mantion A, Massüger L, Rabu P, Palivan C, McCusker LB, Taubert A. Metal-peptide frameworks (MPFs): “bioinspired” metal organic frameworks. J Am Chem Soc. 2008;130(8):2517–26. https://doi.org/10.1021/ja0762588.

    Article  CAS  PubMed  Google Scholar 

  31. Tao K, Makam P, Aizen R, Gazit E. Self-assembling peptide semiconductors. Science. 2017;358(6365):9756. https://doi.org/10.1126/science.aam9756.

    Article  CAS  Google Scholar 

  32. Bajpayee N, Vijayakanth T, Rencus-Lazar S, Dasgupta S, Desai AV, Jain R, et al. Exploring helical peptides and foldamers for the design of metal helix frameworks: current trends and future perspectives. Angew Chem Int Ed. 2022;62:e2022145. https://doi.org/10.1002/anie.202214583.

    Article  CAS  Google Scholar 

  33. Guo YY, Nuermaimaiti A, Kjeldsen ND, Gothelf KV, Linderoth TR. Two-dimensional coordination networks from cyclic dipeptides. J Am Chem Soc. 2020;142(47):19814–8. https://doi.org/10.1021/jacs.0c08700.

    Article  CAS  PubMed  Google Scholar 

  34. Puškarić A, Halasz I, Gredičak M, Palčić A, Bronić J. Synthesis and structure characterization of zinc and cadmium dipeptide coordination polymers. New J Chem. 2016;40(5):4252–7. https://doi.org/10.1039/C5NJ03001C.

    Article  CAS  Google Scholar 

  35. Anderson SL, Stylianou KC. Biologically derived metal organic frameworks. Coordin Chem Rev. 2017;349:102–28. https://doi.org/10.1016/j.ccr.2017.07.012.

    Article  CAS  Google Scholar 

  36. Zhuang J, Young AP, Tsung CK. Integration of biomolecules with metal-organic frameworks. Small. 2017;13(32):1700880. https://doi.org/10.1002/smll.201700880.

    Article  CAS  Google Scholar 

  37. Heinz-Kunert SL, Pandya A, Dang VT, Tran PN, Ghosh S, McElheny D, et al. Assembly of π-stacking helical peptides into a porous and multivariable proteomimetic framework. J Am Chem Soc. 2022;144(15):7001–9. https://doi.org/10.1021/jacs.2c02146.

    Article  CAS  PubMed  Google Scholar 

  38. Emami S, Paz FAA, Mendes A, Gales L. Toward the construction of 3D dipeptide metal frameworks. Cryst Growth Des. 2014;14(9):4777–80. https://doi.org/10.1021/cg500925x.

    Article  CAS  Google Scholar 

  39. Katsoulidis AP, Park KS, Antypov D, Mart-Gastaldo C, Miller GJ, Warren JE, et al. Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew Chem Int Ed. 2014;126(1):197–202. https://doi.org/10.1002/ange.201307074.

    Article  Google Scholar 

  40. Rabone J, Yue YF, Chong SY, Stylianou KC, Bacsa J, Bradshaw D, et al. An adaptable peptide-based porous material. Science. 2010;329(5995):1053–7. https://doi.org/10.1126/science.1190672.

    Article  CAS  PubMed  Google Scholar 

  41. Martí-Gastaldo C, Warren JE, Stylianou KC, Flack NLO, Rosseinsky MJ. Enhanced stability in rigid peptide-based porous materials. Angew Chem Int Ed. 2012;124(44):11206–10. https://doi.org/10.1002/ange.201203929.

    Article  Google Scholar 

  42. Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Metal-coordinated supramolecular polymers from the minimalistic hybrid peptide foldamers. Angew Chem Int Ed. 2021;133(18):9951–6. https://doi.org/10.1002/ange.202015838.

    Article  Google Scholar 

  43. Gui SL, Huang YY, Hu F, Jin YL, Zhang GX, Zhang DQ, et al. Bioinspired peptide for imaging Hg2+ distribution in living cells and zebrafish based on coordination-mediated supramolecular assembling. Anal Chem. 2018;90(16):9708–15. https://doi.org/10.1021/acs.analchem.8b00059.

    Article  CAS  PubMed  Google Scholar 

  44. Lee HY, Kampf JW, Park KS, Marsh ENG. Covalent metal-peptide framework compounds that extend in one and two dimensions. Cryst Growth Des. 2008;8(1):296–303. https://doi.org/10.1021/cg700724h.

    Article  CAS  Google Scholar 

  45. Chen Y, Yang YQ, Orr AA, Makam P, Redko B, Haimov E, et al. Self-assembled peptide nano-superstructure towards enzyme mimicking hydrolysis. Angew Chem Int Ed. 2021;133(31):17301–7. https://doi.org/10.1002/anie.202105830.

    Article  CAS  Google Scholar 

  46. Jeong S, Zhang L, Kim J, Gong J, Choi J, Ok KM, et al. Conformational adaptation of β-peptide foldamers for the formation of metal-peptide frameworks. Angew Chem Int Ed. 2022;61(1):e202108364. https://doi.org/10.1002/anie.202108364.

    Article  CAS  Google Scholar 

  47. Martí-Gastaldo C, Warren JE, Briggs ME, Armstrong JA, Thomas KM, Rosseinsky MJ. Sponge-like behaviour in isoreticular Cu(Gly-His-x) peptide-based porous materials. Chem Eur J. 2015;21(45):16027–34. https://doi.org/10.1002/chem.201502098.

    Article  CAS  PubMed  Google Scholar 

  48. Misra R, Saseendran A, Dey S, Gopi HN. Metal-helix frameworks from short hybrid peptide foldamers. Angew Chem Int Ed. 2019;131(8):2273–7. https://doi.org/10.1002/ange.201810849.

    Article  Google Scholar 

  49. Katsoulidis AP, Antypov D, Whitehead GFS, Carrington EJ, Adams DJ, Berry NG, et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature. 2019;565(7738):213–7. https://doi.org/10.1038/s41586-018-0820-9.

    Article  CAS  PubMed  Google Scholar 

  50. Shakya S, He Y, Ren X, Guo T, Maharjan A, Luo T, et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small. 2019;15(27):1901065. https://doi.org/10.1002/smll.201901065.

    Article  CAS  Google Scholar 

  51. Hintz H, Wuttke S. Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study. Chem Commun. 2014;50(78):11472–5. https://doi.org/10.1039/c4cc02650k.

    Article  CAS  Google Scholar 

  52. Liang JY, Mazur F, Tang CY, Ning XN, Chandrawati R, Liang K. Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades. Chem Sci. 2019;10(34):7852–8. https://doi.org/10.1039/C9SC02021G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeng YW, Xiao JL, Cong YY, Liu J, He YM, Ross BD, et al. PEGylated nanoscale metal-organic frameworks for targeted cancer imaging and drug delivery. Bioconjugate Chem. 2021;32(10):2195–204. https://doi.org/10.1021/acs.bioconjchem.1c00368.

    Article  CAS  Google Scholar 

  54. Liu Q, Deng CH, Sun N. Hydrophilic tripeptide-functionalized magnetic metal-organic frameworks for the highly efficient enrichment of N-linked glycopeptides. Nanoscale. 2018;10(25):12149–55. https://doi.org/10.1039/C8NR03174F.

    Article  CAS  PubMed  Google Scholar 

  55. Röder R, Preiß T, Hirschle P, Steinborn B, Zimpel A, Höhn M. Multifunctional nanoparticles by coordinative self-assembly of his-tagged units with metal-organic frameworks. J Am Chem Soc. 2017;139(6):2359–68. https://doi.org/10.1021/jacs.6b11934.

    Article  CAS  PubMed  Google Scholar 

  56. Liu ZP, Bai J, Liang CX, Wang YM, Nie HL, Liu XX, et al. Sensitive fluorescent biosensor based on a europium-based metal-organic framework for protein kinase activity analysis. Biosens Bioelectron. 2022;203:114055. https://doi.org/10.1016/j.bios.2022.114055.

    Article  CAS  PubMed  Google Scholar 

  57. Fracaroli AM, Siman P, Nagib DA, Suzuki M, Furukawa H, Toste FD, et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal-organic framework crystals. J Am Chem Soc. 2016;138(27):8352–5. https://doi.org/10.1021/jacs.6b04204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonnefoy J, Legrand A, Quadrelli EA, Canivet J, Farrusseng D. Enantiopure peptide-functionalized metal-organic frameworks. J Am Chem Soc. 2015;137(29):9409–16. https://doi.org/10.1021/jacs.5b05327.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang W, Wang XH, Chen JW, Liu Y, Han HB, Ding Y, et al. Deuterohemin-peptide enzyme mimic-embedded metal-organic frameworks through biomimetic mineralization with efficient ATRP catalytic activity. ACS Appl Mater Interfaces. 2017;9(32):26948–57. https://doi.org/10.1021/acsami.7b09218.

    Article  CAS  PubMed  Google Scholar 

  60. Zou D, Yu L, Sun Q, Hui Y, Tengjisi Liu Y, et al. A general approach for biomimetic mineralization of MOF particles using biomolecules. Colloid Surf B-Biointerfaces. 2020;193:111108. https://doi.org/10.1016/j.colsurfb.2020.111108.

    Article  CAS  Google Scholar 

  61. Li YW, Xu N, Zhu WH, Wang L, Liu B, Zhang JX, et al. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Appl Mater Interfaces. 2018;10(27):22974–84. https://doi.org/10.1021/acsami.8b06125.

    Article  CAS  PubMed  Google Scholar 

  62. Liu J, Liang JY, Xue JY, Liang K. Metal-organic frameworks as a versatile materials platform for unlocking new potentials in biocatalysis. Small. 2021;17(32):2100300. https://doi.org/10.1002/smll.202100300.

    Article  CAS  Google Scholar 

  63. Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H. Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater. 2012;11(12):1081–5. https://doi.org/10.1038/NMAT3461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ikezoe Y, Fang J, Wasik TL, Shi M, Uemura T, Kitagawa S, et al. Peptide-metal organic framework swimmers that direct the motion toward chemical targets. Nano Lett. 2015;15(6):4019–23. https://doi.org/10.1021/acs.nanolett.5b00969.

    Article  CAS  PubMed  Google Scholar 

  65. Ikezoe Y, Fang J, Wasik TL, Uemura T, Zheng Y, Kitagawa S, et al. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators. Adv Mater. 2015;27(2):288–91. https://doi.org/10.1002/adma.201404273.

    Article  CAS  PubMed  Google Scholar 

  66. Lin L, Yu R, Yang W, Wu XY, Lu CZ. A series of chiral metal-organic frameworks based on oxalyl retro-peptides: synthesis, characterization, dichroism spectra, and gas adsorption. Cryst Growth Des. 2012;12(6):3304–11. https://doi.org/10.1021/cg300440t.

    Article  CAS  Google Scholar 

  67. Stylianou KC, Gómez L, Imaz I, Verdugo-Escamilla C, Ribas X, Maspoch D. Engineering homochiral metal-organic frameworks by spatially separating 1D chiral metal-peptide ladders: tuning the pore size for enantioselective adsorption. Chem Eur J. 2015;21(28):9964–9. https://doi.org/10.1002/chem.201501315.

    Article  CAS  PubMed  Google Scholar 

  68. Sawada T, Matsumoto A, Fujita M. Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sized channel. Angew Chem Int Ed. 2014;126(28):7356–60. https://doi.org/10.1002/ange.201403506.

    Article  Google Scholar 

  69. Navarro-Sanchez J, Argente-Garcia AI, Moliner-Martinez Y, Roca-Sanjuan D, Antypov D, Campins-Falco P, et al. Peptide metal-organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc. 2017;139(12):4294–7. https://doi.org/10.1021/jacs.7b00280.

    Article  CAS  PubMed  Google Scholar 

  70. Cao W, Missen OP, Turner DR. Enantioselective chiral sorption of 1-phenylethanol by homochiral 1D coordination polymers. Inorg Chem Front. 2022;9(4):709–18. https://doi.org/10.1039/D1QI01457A.

    Article  CAS  Google Scholar 

  71. Wu JN, Jin XT, Zhu CH, Yan YH, Ding CF, Tang KQ. Gold nanoparticle-glutathione functionalized MOFs as hydrophilic materials for the selective enrichment of glycopeptides. Talanta. 2021;228:122263. https://doi.org/10.1016/j.talanta.2021.122263.

    Article  CAS  PubMed  Google Scholar 

  72. Li DP, Zhang JH, Xie GS, Ji FF, Shao XJ, Zhu L, et al. A dual-zwitterion functionalized ultra-hydrophilic metal-organic framework with ingenious synergy for enhanced enrichment of glycopeptides. Chem Commun. 2019;55(93):13967–70. https://doi.org/10.1039/c9cc06785j.

    Article  CAS  Google Scholar 

  73. Yu DQ, Guan YJ, Bai FQ, Du Z, Gao N, Ren JS, et al. Metal-organic frameworks harness Cu chelating and photooxidation against amyloid β aggregation in vivo. Chem Eur J. 2019;25(14):3489–95. https://doi.org/10.1002/chem.201805835.

    Article  CAS  PubMed  Google Scholar 

  74. Wu S, Sun ZW, Peng Y, Han YW, Li JL, Zhu S, et al. Peptide-functionalized metal-organic framework nanocomposite for ultrasensitive detection of secreted protein acidic and rich in cysteine with practical application. Biosens Bioelectron. 2020;169:112613. https://doi.org/10.1016/j.bios.2020.112613.

    Article  CAS  PubMed  Google Scholar 

  75. Liang H, Chen CL, Zeng J, Zhou M, Wang L, Ning GB, et al. Dual-signal electrochemical biosensor for neutrophil gelatinase-associated lipocalin based on MXene-polyaniline and Cu-MOF/single-walled carbon nanohorn nanostructures. ACS Appl Nano Mater. 2022;5(11):16774–83. https://doi.org/10.1021/acsanm.2c03715.

    Article  CAS  Google Scholar 

  76. Wang YD, Mao ZH, Chen Q, Koh K, Hu XJ, Chen HX. Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer. Biosens Bioelectron. 2022;201:113954. https://doi.org/10.1016/j.bios.2021.113954.

    Article  CAS  PubMed  Google Scholar 

  77. Navarro-Sánchez J, Mullor-Ruíz I, Popescu C, Santamaría-Pérez D, Segura A, Errandonea D, et al. Peptide metal-organic frameworks under pressure: flexible linkers for cooperative compression. Dalton Trans. 2018;47(31):10654–9. https://doi.org/10.1039/C8DT01765D.

    Article  PubMed  Google Scholar 

  78. Hartlieb KJ, Holcroft JM, Moghadam PZ, Vermeulen NA, Algaradah MM, Nassar MS, et al. CD-MOF: a versatile separation medium. J Am Chem Soc. 2016;138(7):2292–301. https://doi.org/10.1021/jacs.5b12860.

    Article  CAS  PubMed  Google Scholar 

  79. Gu ZG, Zhan C, Zhang J, Bu X. Chiral chemistry of metal-camphorate frameworks. Chem Soc Rev. 2016;45(11):3122–44. https://doi.org/10.1039/C6CS00051G.

    Article  CAS  PubMed  Google Scholar 

  80. Liu J, Mukherjee S, Wang F, Fischer RA, Zhang J. Homochiral metal-organic frameworks for enantioseparation. Chem Soc Rev. 2021;50(9):5706–57. https://doi.org/10.1039/D0CS01236J.

    Article  CAS  PubMed  Google Scholar 

  81. Gong W, Chen ZJ, Dong JQ, Liu Y, Cui Y. Chiral metal-organic frameworks. Chem Rev. 2022;122(9):9078–144. https://doi.org/10.1021/acs.chemrev.1c00740.

    Article  CAS  PubMed  Google Scholar 

  82. Lv DY, Nong WQ, Guan YG. Edible ligand-metal-organic frameworks: synthesis, structures, properties and applications. Coordin Chem Rev. 2022;450:214234. https://doi.org/10.1016/j.ccr.2021.214234.

    Article  CAS  Google Scholar 

  83. Bhattacharjee S, Khan MI, Li X, Zhu QL, Wu XT. Recent progress in asymmetric catalysis and chromatographic separation by chiral metal-organic frameworks. Catalysts. 2018;8(3):120. https://doi.org/10.3390/catal8030120.

    Article  CAS  Google Scholar 

  84. Saito A, Sawada T, Fujita M. X-ray crystallographic observation of chiral transformations within a metal-peptide pore. Angew Chem Int Ed. 2020;59(46):20367–70. https://doi.org/10.1002/anie.202007731.

    Article  CAS  Google Scholar 

  85. Mon M, Qu X, Ferrando-Soria J, Pellicer-Carreño I, Sepúlveda-Escribano A, Ramos-Fernandez EV, et al. Fine-tuning of the confined space in microporous metal-organic frameworks for efficient mercury removal. J Mater Chem A. 2017;5(38):20120–5. https://doi.org/10.1039/C7TA06199D.

    Article  CAS  Google Scholar 

  86. Mon M, Bruno R, Ferrando-Soria J, Bartella L, Di Donna L, Talia M, et al. Crystallographic snapshots of host-guest interactions in drugs@metal-organic frameworks: towards mimicking molecular recognition processes. Mater Horiz. 2018;5(4):683–90. https://doi.org/10.1039/C8MH00302E.

    Article  CAS  Google Scholar 

  87. Mon M, Bruno R, Tiburcio E, Casteran PE, Ferrando-Soria J, Armentano D, et al. Efficient capture of organic dyes and crystallographic snapshots by a highly crystalline amino-acid-derived metal-organic framework. Chem Eur J. 2018;24(67):17712–8. https://doi.org/10.1002/chem.201803547.

    Article  CAS  PubMed  Google Scholar 

  88. Mon M, Bruno R, Tiburcio E, Viciano-Chumillas M, Kalinke LH, Ferrando-Soria J, et al. Multivariate metal-organic frameworks for the simultaneous capture of organic and inorganic contaminants from water. J Am Chem Soc. 2019;141(34):13601–9. https://doi.org/10.1021/jacs.9b06250.

    Article  CAS  PubMed  Google Scholar 

  89. Zhao JS, Li HW, Han YZ, Li R, Ding XS, Feng X, et al. Chirality from substitution: enantiomer separation via a modified metal-organic framework. J Mater Chem A. 2015;3(23):12145–8. https://doi.org/10.1039/C5TA00998G.

    Article  CAS  Google Scholar 

  90. Chan JY, Zhang HC, Nolvachai Y, Hu YX, Zhu HJ, Forsyth M, et al. Incorporation of homochirality into a zeolitic imidazolate framework membrane for efficient chiral separation. Angew Chem Int Ed. 2018;130(52):17376–80. https://doi.org/10.1002/ange.201810925.

    Article  Google Scholar 

  91. Yao JF, Dong DH, Li D, He L, Xu GS, Wang HT. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem Commun. 2011;47(9):2559–61. https://doi.org/10.1039/C0CC0473A4A.

    Article  CAS  Google Scholar 

  92. London N, Raveh B, Schueler-Furman O. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol. 2013;23(6):894–902. https://doi.org/10.1016/j.sbi.2013.07.006.

    Article  CAS  PubMed  Google Scholar 

  93. Huang YY, Zhan C, Yang Y, Wang LN, Zhong HF, Yu Y, et al. Tuning proapoptotic activity of a phosphoric-acid-tethered tetraphenylethene by visible-light-triggered isomerization and switchable protein interactions for cancer therapy. Angew Chem Int Ed. 2022;61(36):e2022083. https://doi.org/10.1002/anie.202208378.

    Article  CAS  Google Scholar 

  94. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55. https://doi.org/10.1038/nrc3982.

    Article  CAS  PubMed  Google Scholar 

  95. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67. https://doi.org/10.1016/j.cell.2006.08.019.

    Article  CAS  PubMed  Google Scholar 

  96. Robles MS, Humphrey SJ, Mann M. Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 2017;25(1):118–27. https://doi.org/10.1016/j.cmet.2016.10.004.

    Article  CAS  PubMed  Google Scholar 

  97. Takahashi Y, Zhang JB, Hsu PK, Ceciliato PHO, Zhang L, Dubeaux G, et al. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun. 2020;11(1):1–12. https://doi.org/10.1038/s41467-019-13875-y.

    Article  CAS  Google Scholar 

  98. Zhong HF, Li YM, Huang YY, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. Anal Methods. 2021;13(7):862–73. https://doi.org/10.1039/D0AY02193H.

    Article  CAS  PubMed  Google Scholar 

  99. Saeed A, Hussain D, Saleem S, Mehdi S, Javeed R, Jabeen F, et al. Metal-organic framework-based affinity materials in proteomics. Anal Bioanal Chem. 2019;411(9):1745–59. https://doi.org/10.1007/s00216-019-01610-x.

    Article  CAS  PubMed  Google Scholar 

  100. Xiao J, Yang SS, Wu JX, Wang H, Yu XZ, Shang WB, et al. Highly selective capture of monophosphopeptides by two-dimensional metal-organic framework nanosheets. Anal Chem. 2019;91(14):9093–101. https://doi.org/10.1021/acs.analchem.9b01581.

    Article  CAS  PubMed  Google Scholar 

  101. Wang YN, Wang JX, Gao MX, Zhang XM. Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides. Proteomics. 2017;17(10):201700005. https://doi.org/10.1002/pmic.201700005.

    Article  CAS  Google Scholar 

  102. Zhong HF, Yuan CW, He JY, Yu Y, Jin YL, Huang YY, et al. Engineering peptide-functionalized biomimetic nanointerfaces for synergetic capture of circulating tumor cells in an EpCAM-independent manner. Anal Chem. 2021;93(28):9778–87. https://doi.org/10.1021/acs.analchem.1c01254.

    Article  CAS  PubMed  Google Scholar 

  103. Zhu YY, Huang YY, Jin YL, Gui SL, Zhao R. Peptide-guided system with programmable subcellular translocation for targeted therapy and bypassing multidrug resistance. Anal Chem. 2019;91(3):1880–6. https://doi.org/10.1021/acs.analchem.8b03598.

    Article  CAS  PubMed  Google Scholar 

  104. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32. https://doi.org/10.1016/j.cell.2016.01.043.

    Article  CAS  PubMed  Google Scholar 

  105. Takeuchi T, Mori K, Sunayama H, Takano E, Kitayama K, Shimizu T, et al. Antibody-conjugated signaling nanocavities fabricated by dynamic molding for detecting cancers using small extracellular vesicle markers from tears. J Am Chem Soc. 2020;142(14):6617–24. https://doi.org/10.1021/jacs.9b13874.

    Article  CAS  PubMed  Google Scholar 

  106. Trams EG, Lauter CJ, Salem N, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta-Biomembr. 1981;645(1):63–70. https://doi.org/10.1016/0005-2736(81)90512-5.

    Article  CAS  Google Scholar 

  107. Xu K, Jin YL, Li YM, Huang YY, Zhao R. Recent progress of exosome isolation and peptide recognition-guided strategies for exosome research. Front Chem. 2022;10:844124. https://doi.org/10.3389/fchem.2022.844124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Le MCN, Fan ZH. Exosome isolation using nanostructures and microfluidic devices. Biomed Mater. 2021;16(2):022005. https://doi.org/10.1088/1748-605X/abde70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (22122411, 21874141, 21974143, and 22174145) and the Chinese Academy of Sciences (E01Z0112) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Gao, H., Jin, Y. et al. Peptide-derived coordination frameworks for biomimetic and selective separation. Anal Bioanal Chem 415, 4079–4092 (2023). https://doi.org/10.1007/s00216-023-04761-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04761-0

Keywords

Navigation