Skip to main content
Log in

A “dilute-and-shoot” column-switching UHPLC–MS/MS procedure for the rapid determination of branched nonylphenol in human urine: method optimisation and some fundamental aspects of nonylphenol analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Technical grade branched nonylphenol (NP) was determined in human urine by online solid phase extraction–ultra high-performance liquid chromatography–tandem mass spectrometry (SPE–UHPLC–MS/MS). Prior to analysis, urine specimens were simply diluted and enzymatically deconjugated. The run time of the chromatography, including SPE and re-equilibration, was 9 min per injection. The enzymatic cleavage of NP conjugates was optimised with incurred sample material from a human metabolism study: the highest recoveries were obtained with β-glucuronidase from E. coli K 12 in 0.1 M ammonium acetate at pH 6.5, within a minimal hydrolysis time of 30 to 60 min. Using sodium acetate instead of ammonium acetate led to systematically decreased recovery rates. The analytical method was validated regarding its precision (coefficients of variation: 2.9–7.4%), accuracy (relative recovery rates: 93–105%), robustness (relative recovery rates in individual urine matrices: 92–117%), selectivity, and limit of quantification (1.0 μg L−1). Fundamental aspects in the analysis of technical product mixtures such as NP, comprising various isomers and homologues, were considered. Validation results, an exposure scenario and the application of the procedure to real samples, show that it enables a rugged monitoring of NP exposures above, at, and significantly below health-based guidance values, corresponding to daily NP intakes in the low μg kg−1 d−1 range. On the other hand, background levels in non-specifically exposed populations cannot be detected with this method. Hence, while alternative approaches should be pursued for NP analysis at environmental trace level, the speed and simplicity of our method are ideal for high-throughput human biomonitoring in occupational medicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. “Quaternary” in this paper means that the α-C is bonded to four other carbon atoms: one carbon atom in the aromatic ring plus three alkyl carbons (HO-Ph-CR1R2R3). Accordingly, a “tertiary” α-C would be bonded to the ring, to two alkyl carbons and to one hydrogen atom (HO-Ph-CHR1R2); a “secondary” α-C to the ring, to one alkyl carbon and to two hydrogens (HO-Ph-CH2R1). In some other publications, e.g. [3, 32], the nomenclature is handled differently, from the point of view of the branched nonyl moiety: “tertiary” would designate structures of the HO-Ph-CR1R2R3 type etc.

References

  1. Boehme RM, Andries T, Dötz KH, Thiele B, Guenther K. Synthesis of defined endocrine-disrupting nonylphenol isomers for biological and environmental studies. Chemosphere. 2010;80:813–21. https://doi.org/10.1016/j.chemosphere.2010.03.064.

    Article  CAS  Google Scholar 

  2. Bhatt BD, Prasad JV, Kalpana G, Ali S. Separation and characterization of isomers of p-nonylphenols by capillary GC/GC-MS/GC-FTIR techniques. J Chromatogr Sci. 1992;30:203–10. https://doi.org/10.1093/chromsci/30.6.203.

    Article  CAS  Google Scholar 

  3. Wheeler TF, Heim JR, LaTorre MR, Janes AB. Mass spectral characterization of p-nonylphenol isomers using high-resolution capillary GC-MS. J Chromatogr Sci. 1997;35:19–30. https://doi.org/10.1093/chromsci/35.1.19.

    Article  CAS  Google Scholar 

  4. Eganhouse RP, Pontolillo J, Gaines RB, Frysinger GS, Gabriel FLP, Kohler HPE, Giger W, Barber LB. Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Environ Sci Technol. 2009;43:9306–13. https://doi.org/10.1021/es902622r.

    Article  CAS  Google Scholar 

  5. EC (European Commission). EUR 20387 EN – European Union Risk Assessment Report. 4-Nonylphenol (branched) and nonylphenol, Volume 10. Luxembourg: Office for Official Publications of the European Communities; 2002. https://echa.europa.eu/documents/10162/43080e23-3646-4ddf-836b-a248bd4225c6. Accessed 16 Feb 2022.

  6. Ruß AS, Vinken R, Schuphan I, Schmidt B. Synthesis of branched para-nonylphenol isomers: Occurrence and quantification in two commercial mixtures. Chemosphere. 2005;60:1624–35. https://doi.org/10.1016/j.chemosphere.2005.02.046.

    Article  CAS  Google Scholar 

  7. Chen ML, Lee WP, Chung HY, Guo BR, Mao IF. Biomonitoring of alkylphenols exposure for textile and housekeeping workers. Int J Environ Anal Chem. 2005;85:335–47. https://doi.org/10.1080/03067310412331315575.

    Article  CAS  Google Scholar 

  8. Peremiquel-Trillas P, Benavente Y, Martín-Bustamante M, Casabonne D, Pérez-Gómez B, Gómez-Acebo I, Oliete-Canela A, Diéguez-Rodríguez M, Tusquets I, Amiano P, Mengual L, Ardanaz E, Capelo R, Molina de la Torre AJ, Salas Trejo D, Fernández-Tardón G, Lope V, Jimenez-Moleon JJ, Marcos-Gragera R, Dierssen-Sotos T, Azpiri M, Muñoz M, Guevara M, Fernández-Villa T, Molina-Barceló A, Aragonés N, Pollán M, Castaño-Vinyals G, Alguacil J, Kogevinas M, de Sanjosé S, Costas L. Alkylphenolic compounds and risk of breast and prostate cancer in the MCC-Spain study. Environ Int. 2019;122:389–99. https://doi.org/10.1016/j.envint.2018.12.007.

    Article  CAS  Google Scholar 

  9. Prichystalova R, Caron-Beaudoin E, Richardson L, Dirkx E, Amadou A, Zavodna T, Cihak R, Cogliano V, Hynes J, Pelland-St-Pierre L, Verner MA, van Tongeren M, Ho V. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. J Expo Sci Environ Epidemiol. 2021;31:753–68. https://doi.org/10.1038/s41370-020-0253-z.

    Article  CAS  Google Scholar 

  10. Ringbeck B, Bury D, Hayen H, Weiss T, Brüning T, Koch HM. Determination of specific urinary nonylphenol metabolites by online-SPE-LC-MS/MS as novel human exposure biomarkers. J Chromatogr B. 2021;1177:122794. https://doi.org/10.1016/j.jchromb.2021.122794.

    Article  CAS  Google Scholar 

  11. Howe SR, Surana P, Jakupca MR, Borodinsky L. Potential dietary exposure to p-nonylphenol from food-contact use of tris(nonylphenyl)phosphite (TNPP). Food Addit Contam. 2001;18:1021–39. https://doi.org/10.1080/02652030110050320.

    Article  CAS  Google Scholar 

  12. Mottier P, Frank N, Dubois M, Tarres A, Bessaire T, Romero R, Delatour T. LC-MS/MS analytical procedure to quantify tris(nonylphenyl)phosphite, as a source of the endocrine disruptors 4-nonylphenols, in food packaging materials. Food Addit Contam A. 2014;31:962–72. https://doi.org/10.1080/19440049.2014.896481.

    Article  CAS  Google Scholar 

  13. Lu Z, Gan J. Analysis, toxicity, occurrence and biodegradation of nonylphenol isomers: a review. Environ Int. 2014;73:334–45. https://doi.org/10.1016/j.envint.2014.08.017.

    Article  CAS  Google Scholar 

  14. Bhandari G, Bagheri AR, Bhatt P, Bilal M. Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere. 2021;275:130013. https://doi.org/10.1016/j.chemosphere.2021.130013.

    Article  CAS  Google Scholar 

  15. Müller S, Schmid P, Schlatter C. Pharmacokinetic behavior of 4-nonylphenol in humans. Environ Toxicol Pharmacol. 1998;5:257–65. https://doi.org/10.1016/s1382-6689(98)00009-x.

    Article  Google Scholar 

  16. Kuklenyik Z, Ekong J, Cutchins CD, Needham LL, Calafat AM. Simultaneous measurement of urinary bisphenol A and alkylphenols by automated solid-phase extractive derivatization gas chromatography/mass spectrometry. Anal Chem. 2003;75:6820–5. https://doi.org/10.1021/ac0303158.

    Article  CAS  Google Scholar 

  17. Kawaguchi M, Ito R, Hayatsu Y, Nakata H, Sakui N, Okanouchi N, Saito K, Yokota H, Izumi SI, Makino T, Nakazawa H. Stir bar sorptive extraction with in situ de-conjugation and thermal desorption gas chromatography-mass spectrometry for measurement of 4-nonylphenol glucuronide in human urine sample. J Pharm Biomed Anal. 2006;40:82–7. https://doi.org/10.1016/j.jpba.2005.05.024.

    Article  CAS  Google Scholar 

  18. Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Seto Y, Nakazawa H. Stir-bar-sorptive extraction, with in-situ deconjugation, and thermal desorption with in-tube silylation, followed by gas chromatography-mass spectrometry for measurement of urinary 4-nonylphenol and 4-tert-octylphenol glucuronides. Anal Bioanal Chem. 2007;388:391–8. https://doi.org/10.1007/s00216-007-1225-z.

    Article  CAS  Google Scholar 

  19. Chung SH, Ding WH. Isotope-dilution gas chromatography-mass spectrometry coupled with injection-port butylation for the determination of 4-t-octylphenol, 4-nonylphenols and bisphenol A in human urine. J Pharm Biomed Anal. 2018;149:572–6. https://doi.org/10.1016/j.jpba.2017.11.063.

    Article  CAS  Google Scholar 

  20. Hou Y, Li S, Xia L, Yang Q, Zhang L, Zhang X, Liu H, Huo R, Cao G, Huang C, Tian X, Sun L, Cao D, Zhang M, Zhang Q, Tang N. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. Sci Total Environ. 2021;754:142085. https://doi.org/10.1016/j.scitotenv.2020.142085.

    Article  CAS  Google Scholar 

  21. Inoue K, Kawaguchi M, Okada F, Takai N, Yoshimura Y, Horie M, Izumi SI, Makino T, Nakazawa H. Measurement of 4-nonylphenol and 4-tert-octylphenol in human urine by column-switching liquid chromatography–mass spectrometry. Anal Chim Acta. 2003;486:41–50. https://doi.org/10.1016/S0003-2670(03)00464-1.

    Article  CAS  Google Scholar 

  22. Xiao J, Shao B, Wu XY, Sun XJ, Wu YN. A study on bisphenol A, nonylphenol, and octylphenol in human urine samples detected by SPE-UPLC-MS. Biomed Environ Sci. 2011;24:40–6. https://doi.org/10.3967/0895-3988.2011.01.005.

    Article  CAS  Google Scholar 

  23. Leng G, Gries W. New specific and sensitive biomonitoring methods for chemicals of emerging health relevance. Int J Hyg Environ Health. 2017;220:113–22. https://doi.org/10.1016/j.ijheh.2016.09.014.

    Article  CAS  Google Scholar 

  24. Gries W, Leng G, Küpper K, Blümlein K, Gerling S, Göen T, Hartwig A, MAK Commission. 4-tert-Octylphenol and p-nonylphenol – determination of 4-tert-octylphenol and p-nonylphenol in urine by LC-MS/MS [biomonitoring methods, 2019]. In: The MAK Collection for Occupational Health and Safety. 2019. https://doi.org/10.1002/3527600418.bi14066e2219

  25. Battal D, Sukuroglu AA, Kocadal K, Cok I, Unlusayin I. Establishment of rapid, sensitive, and quantitative liquid chromatography-electrospray ionization-tandem mass spectrometry method coupled with liquid–liquid extraction for measurement of urinary bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Rapid Commun Mass Spectrom. 2021;35:e9084. https://doi.org/10.1002/rcm.9084.

    Article  CAS  Google Scholar 

  26. Ringbeck B, Belov VN, Schmidtkunz C, Küpper K, Gries W, Weiss T, Brüning T, Hayen H, Bury D, Leng G, Koch HM. Human metabolism and urinary excretion kinetics of nonylphenol in three volunteers after a single oral dose. Chem Res Toxicol. 2021;34:2392–403. https://doi.org/10.1021/acs.chemrestox.1c00301.

    Article  CAS  Google Scholar 

  27. Asimakopoulos AG, Thomaidis N, Koupparis MA. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett. 2012;210:141–54. https://doi.org/10.1016/j.toxlet.2011.07.032.

    Article  CAS  Google Scholar 

  28. Stottmeister E, Heemken OP, Hendel P, Donnevert G, Frey S, Allmendinger H, Sawal G, Jandel B, Geiss OS, Donau R, Koch A, Heinz I, Ottaviani M, Veschetti E, Hartl W, Kubwabo C, Benthe C, Tobinski V, Woldmann H, Spilker R. Interlaboratory trial on the analysis of alkylphenols, alkylphenol ethoxylates, and bisphenol A in water samples according to ISO/CD 18857–2. Anal Chem. 2009;81:6765–73. https://doi.org/10.1021/ac900813m.

    Article  CAS  Google Scholar 

  29. Namieśnik J. Green analytical chemistry – Some remarks. J Sep Sci. 2001;24:151–3. https://doi.org/10.1002/1615-9314(20010201)24:2%3c151::AID-JSSC151%3e3.0.CO;2-4.

    Article  Google Scholar 

  30. Greer B, Chevallier O, Quinn B, Botana LM, Elliott CT. Redefining dilute and shoot: the evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. Trends Anal Chem. 2021;141:116284. https://doi.org/10.1016/j.trac.2021.116284.

    Article  CAS  Google Scholar 

  31. Schmidtkunz C, Küpper K, Gries W, Leng G. A validated LC-MS/MS method for the quantification of climbazole metabolites in human urine. J Chromatogr B. 2021;1173:122677. https://doi.org/10.1016/j.jchromb.2021.122677.

    Article  CAS  Google Scholar 

  32. Fiege H, Voges HW, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch HJ, Garbe D, Paulus W. Phenol derivatives. In: Ullmann’s Encyclopedia of industrial chemistry, Vol. 26. Weinheim: Wiley-VCH; 2000. pp. 521–582. https://doi.org/10.1002/14356007.a19_313

  33. Petrovic M, Barceló D, Diaz A, Ventura F. Low nanogram per liter determination of halogenated nonylphenols, nonylphenol carboxylates, and their non-halogenated precursors in water and sludge by liquid chromatography electrospray tandem mass spectrometry. J Am Soc Mass Spectrom. 2003;14:516–27. https://doi.org/10.1016/S1044-0305(03)00139-9.

    Article  CAS  Google Scholar 

  34. Shao B, Han H, Hu J, Zhao J, Wu G, Xue Y, Ma Y, Zhang S. Determination of alkylphenol and bisphenol A in beverages using liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Chim Acta. 2005;530:245–52. https://doi.org/10.1016/j.aca.2004.09.086.

    Article  CAS  Google Scholar 

  35. Magi E, Scapolla C, Di Carro M, Liscio C. Determination of endocrine-disrupting compounds in drinking waters by fast liquid chromatography–tandem mass spectrometry. J Mass Spectrom. 2010;45:1003–11. https://doi.org/10.1002/jms.1781.

    Article  CAS  Google Scholar 

  36. Di Carro M, Scapolla C, Liscio C, Magi E. Development of a fast liquid chromatography–tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters. Anal Bioanal Chem. 2010;398:1025–34. https://doi.org/10.1007/s00216-010-3985-0.

    Article  CAS  Google Scholar 

  37. Jeong SY, Jang JH, Cho HY, Lee YB. Gender differences in pharmacokinetics and tissue distribution of 4-n-nonylphenol in rats. Arch Toxicol. 2019;93:3121–39. https://doi.org/10.1007/s00204-019-02581-9.

    Article  CAS  Google Scholar 

  38. Gabriel FLP, Routledge EJ, Heidlberger A, Rentsch D, Guenther K, Giger W, Sumpter JP, Kohler HPE. Isomer-specific degradation and endocrine disrupting activity of nonylphenols. Environ Sci Technol. 2008;42:6399–408. https://doi.org/10.1021/es800577a.

    Article  CAS  Google Scholar 

  39. Ringbeck B, Bury D, Ikeda-Araki A, Ait Bamai Y, Ketema RM, Miyashita C, Brüning T, Kishi R, Koch HM. Nonylphenol exposure in 7-year-old Japanese children between 2012 and 2017– Estimation of daily intakes based on novel urinary metabolites. Environ Int. 2022;161:107145. https://doi.org/10.1016/j.envint.2022.107145.

    Article  CAS  Google Scholar 

  40. Rabouan S, Dupuis A, Cariot A, Albouy-Llaty M, Legube B, Migeot V. Analytical chemistry and metrological issues related to nonylphenols in environmental health. Trends Anal Chem. 2012;37:112–23. https://doi.org/10.1016/j.trac.2012.02.013.

    Article  CAS  Google Scholar 

  41. Kim YS, Katase T, Horii Y, Yamashita N, Makino M, Uchiyama T, Fujimoto Y, Inoue T. Estrogen equivalent concentration of individual isomer-specific 4-nonylphenol in Ariake sea water. Japan Mar Poll Bull. 2005;51:850–6. https://doi.org/10.1016/j.marpolbul.2005.07.01.

    Article  CAS  Google Scholar 

  42. Zhang C, Eganhouse RP, Pontolillo J, Cozzarelli IM, Wang Y. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J Chromatogr A. 2012;1230:110–6. https://doi.org/10.1016/j.chroma.2011.12.109.

    Article  CAS  Google Scholar 

  43. Chatellier C, Lestremau F. Considérations sur certains aspects métrologiques liés à la mesure du 4-nonylphénol – Etat de l’art et perspectives – Rapport AQUAREF. 2014. https://professionnels.ofb.fr/sites/default/files/pdf/2014_109.pdf. Accessed 2 Sep 2022.

  44. Kawaguchi M, Inoue K, Sakui N, Ito R, Izumi SI, Makino T, Okanouchi N, Nakazawa H. Stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry for the measurement of 4-nonylphenol and 4-tert-octylphenol in human biological samples. J Chromatogr B. 2004;799:119–25. https://doi.org/10.1016/j.jchromb.2003.10.021.

    Article  CAS  Google Scholar 

  45. Gundersen JL. Separation of isomers of nonylphenol and select nonylphenol polyethoxylates by high-performance liquid chromatography on a graphitic carbon column. J Chromatogr A. 2001;914:161–6. https://doi.org/10.1016/S0021-9673(00)01235-8.

    Article  CAS  Google Scholar 

  46. Makino M, Uchiyama T, Saito H, Ogawa S, Iida T, Katase T, Fujimoto Y. Separation, synthesis and estrogenic activity of 4-nonylphenols: two sets of new diastereomeric isomers in a commercial mixture. Chemosphere. 2008;73:1188–93. https://doi.org/10.1016/j.chemosphere.2008.07.075.

    Article  CAS  Google Scholar 

  47. Giger W, Ahel M, Schaffner C. Determination of organic water pollutants by the combined use of high-performance liquid chromatography and high-resolution gas chromatography. In: Angeletti G, Bjørseth A, editors. Analysis of organic micropollutants in water. Dordrecht: D. Reidel; 1984. p. 91–109. https://doi.org/10.1007/978-94-009-6345-0_11.

    Chapter  Google Scholar 

  48. Lorenc JF, Lambeth G, Scheffer W. Alkylphenols. In: Kirk-Othmer Encyclopedia of chemical technology, Vol. 2. New York: Wiley; 2003. pp. 203–233. https://doi.org/10.1002/0471238961.0112112512151805.a01.pub2

  49. Roche Diagnostics GmbH. Bulletin. β-glucuronidase from E. coli K 12, Cat. No. 03 707 598 001, Version 08. Via Sigma-Aldrich; 2021. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/430/175/bgalsrobul.pdf. Accessed 17 Feb 2022.

  50. Roche Diagnostics GmbH. Product information sheet. β-glucuronidase/arylsulfatase obtained from Helix pomatia, Cat. No. 10 127 060 001, Version 09. Via Sigma-Aldrich; 2017. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/133/342/bgalarobul.pdf. Accessed 17 Feb 2022.

  51. Sigma-Aldrich, Inc. Data Sheet. β-Glucuronidase Type HP-2 from Helix pomatia, Cat. No. G7017; 2022. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/630/167/g7017dat.pdf. Accessed 17 Feb 2022.

  52. Konermann L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J Am Soc Mass Spectrom. 2017;28:1827–35. https://doi.org/10.1007/s13361-017-1739-3.

    Article  CAS  Google Scholar 

  53. Schug K, McNair HM. Adduct formation in electrospray ionization. Part 1: Common acidic pharmaceuticals. J Sep Sci. 2002;25:760–6. https://doi.org/10.1002/1615-9314(20020801)25:12%3c759::AID-JSSC760%3e3.0.CO;2-M.

    Article  CAS  Google Scholar 

  54. Ostrowski W, Wojakowska A, Grajzer M, Stobiecki M. Mass spectrometric behavior of phenolic acids standards and their analysis in the plant samples with LC/ESI/MS system. J Chromatogr B. 2014;967:21–7. https://doi.org/10.1016/j.jchromb.2014.07.005.

    Article  CAS  Google Scholar 

  55. Buehler HJ, Katzman PA, Doisy EA. Studies on β-glucuronidase from E coli. Proc Soc Exp Biol Med. 1951;76:672–6. https://doi.org/10.3181/00379727-76-18591.

    Article  CAS  Google Scholar 

  56. Graef V, Furuya E, Nishikaze O. Hydrolysis of steroid glucuronides with β-glucuronidase preparations from bovine liver Helix pomatia, and E. coli. Clin Chem. 1977;23:532–5. https://doi.org/10.1093/clinchem/23.3.532.

    Article  CAS  Google Scholar 

  57. Glaser JH, Conrad HE. Chick embryo liver β-glucuronidase. comparison of activity on natural and artificial substrates. J Biol Chem. 1979;254:6588–97. https://doi.org/10.1016/S0021-9258(18)50409-9.

    Article  CAS  Google Scholar 

  58. Bader M, Bäcker S, Jäger T, Webendörfer S, Van Bortel G, Van Mieghem F, Van Weyenbergh T. Preparedness as a key factor for human biomonitoring programs after chemical incidents. J Expo Sci Environ Epidemiol. 2021;31:867–75. https://doi.org/10.1038/s41370-021-00320-w.

    Article  Google Scholar 

  59. Nielsen E, Østergaard G, Thorup I, Ladefoged O, Jelnes O, Jelnes JE. Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates, tricresyl, phosphates and benzoic acid. Danish Environmental Protection Agency: Environmental Project / Miljøprojekt no. 512; 2000. https://www2.mst.dk/Udgiv/publications/1999/87-7909-566-6/pdf/87-7909-565-8.pdf. Accessed 16 Feb 2022.

  60. ECHA (European Chemicals Agency). Substance evaluation – CoRAP. Phenol, 4-nonyl-, branched; 2021. https://echa.europa.eu/information-on-chemicals/evaluation/community-rolling-action-plan/corap-table/-/dislist/details/0b0236e1806b811b. Accessed 21 June 2022.

  61. Mulder GJ. Conjugation of Phenols. In: Jakoby WB, Bend JR, Caldwell J, editors. Metabolic Basis of Detoxication. New York: Academic Press; 1982. p. 247–69. https://doi.org/10.1016/B978-0-12-380060-2.50019-2.

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Sandra Röhrig (Currenta) for measuring the creatinine contents of urine samples. Special thanks go to Holger M. Koch, Benedikt Ringbeck, Thomas Brüning and Frederik Lessmann (IPA – Institute for Prevention and Occupational Medicine, Bochum) for performing the human metabolism study as well as to the anonymous donors of urine samples. Severin Müller and Hans Certa (SI Group) are acknowledged for kindly supplying the branched NP reference material. Vladimir N. Belov (Max Planck Institute for Biophysical Chemistry, Göttingen) synthesised and generously provided technical grade NP-13C6 as a reference material.

Funding

The development of the analytical method and its application in investigating human metabolism and population samples are part of a large-scale project on the advancement of human biomonitoring in Germany. This project is a cooperation agreed in 2010 between the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) and the Verband der chemischen Industrie e.V. (German Chemical Industry Association – VCI) and is managed by the German Environment Agency (UBA). Experts from governmental scientific authorities, industry and science accompany the project in substance selection and method development. The present study was financed by the Chemie Wirtschaftsförderungs-GmbH, Mainzer Landstraße 55, 60329 Frankfurt (Germany).

Author information

Authors and Affiliations

Authors

Contributions

Christoph Schmidtkunz: Writing, original draft; conceptualisation (exposure modelling); formal analysis; visualisation. Wolfgang Gries: Conceptualisation (laboratory studies); formal analysis; validation; writing, review and editing; project administration; funding acquisition. Katja Küpper: Methodology, validation, investigation. Gabriele Leng: Writing, review and editing; supervision; funding acquisition.

Corresponding author

Correspondence to Christoph Schmidtkunz.

Ethics declarations

Ethics approval and source of biological material

The oral dose study [26] in which human urine samples were obtained for the purpose of metabolism investigation and method development complied with the Code of Ethics of the World Medical Association (1964 Declaration of Helsinki, including its later amendments). It had been reviewed by the Ethics Commission of the Medical Faculty of the Ruhr-Universität Bochum under the reg. no. 15–5433. Written informed consent was provided by each participant of the study, after receiving the study design in written form [26].

Forty spot urine samples from persons without occupational exposure to NP were sourced in the occupational biomonitoring programmes of our company. The participants in these programmes are comprehensively informed by occupational physicians of the Department of Health Protection about the biomonitoring examinations at the Institute of Biomonitoring. Participation is strictly voluntary for each worker and requires his or her informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4.08 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidtkunz, C., Gries, W., Küpper, K. et al. A “dilute-and-shoot” column-switching UHPLC–MS/MS procedure for the rapid determination of branched nonylphenol in human urine: method optimisation and some fundamental aspects of nonylphenol analysis. Anal Bioanal Chem 415, 975–989 (2023). https://doi.org/10.1007/s00216-022-04495-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04495-5

Keywords

Navigation