Skip to main content
Log in

Characterization of ginsenoside structural isomers from mixtures using in situ methylation with direct analysis in real-time ionization tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Characterization of structural isomers of bioactive molecules is important for recognizing their functions, but it has been challenging due to their highly similar structures. As the main bioactive constituents of Panax ginseng, ginsenosides have different structural isomers attributed to the aglycone structure and glycosylation sites as well as stereochemistry of sugar groups attached. This work demonstrated a simple and robust in situ methylation reaction with tetramethylammonium hydroxide (TMAH) using ambient ionization source of direct analysis in real time (DART) to characterize saponin structural isomers. The DART ion source provides favorable conditions to methylate hydroxyl groups of ginsenoside instantaneously with TMAH, and it can ionize the methylated products at the same time. Methylated ginsenoside stereoisomers even with subtle structure differences generated very different mass signals from full-scan MS and tandem MS. High-resolution mass spectrometry aided the assignment of molecular structures of the various precursor and fragment ions from different ginsenosides, which provided structural information for both the aglycone skeleton and the sugar moieties in ginsenosides. The presented method was successfully used for the identification of ginsenosides in Panax ginseng, and saponin isomers were characterized without the need for chromatographic separation and/or tedious offline sample pretreatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry. 2011;72(8):689–99. https://doi.org/10.1016/j.phytochem.2011.02.012.

    Article  CAS  Google Scholar 

  2. Shi ZY, Zeng JZ, Wong AST. Chemical structures and pharmacological profiles of ginseng saponins. Molecules. 2019;24(13). https://doi.org/10.3390/molecules24132443.

  3. Liu ZQ. Chemical insights into ginseng as a resource for natural antioxidants. Chem Rev. 2012;112(6):3329–55. https://doi.org/10.1021/cr100174k.

    Article  CAS  Google Scholar 

  4. Lee JHCS, Lee BH, Yoon IS, Shin TJ, Pyo MK, Lee SM, Rhim H, Park MH, Park TY, Nah SY. Modifications of aliphatic side chain of 20(S)-ginsenoside RG3 cause an enhancement or loss of brain Na+ channel current inhibitions. Biol Pharm Bull. 2008;31:480–6. https://doi.org/10.1248/bpb.31.480.

    Article  CAS  Google Scholar 

  5. Piao X, Zhang H, Kang JP, Yang DU, Li Y, Pang S, et al. Advances in saponin diversity of Panax ginseng. Molecules. 2020;25(15). https://doi.org/10.3390/molecules25153452.

  6. Zhang W, Zhao X, Yuan Y, Miao F, Li W, Ji S, et al. Microfluidic synthesis of multimode Au@CoFeB-Rg3 nanomedicines and their cytotoxicity and anti-tumor effects. Chem Mater. 2020;32(12):5044–56. https://doi.org/10.1021/acs.chemmater.0c00797.

    Article  CAS  Google Scholar 

  7. Zhang X, Liu J, Xiong J, Ji Y, Zhang Y, Chen H, et al. Differentiation of isomeric methoxychalcones by electrospray ionization tandem mass spectrometry. Int J Mass Spectrom. 2018;434:100–7. https://doi.org/10.1016/j.ijms.2018.09.023.

    Article  CAS  Google Scholar 

  8. Ashline DJ, Lapadula AJ, Liu Y-H, Lin M, Grace M, Pramanik B, et al. Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem. 2007;79(10):3830–42. https://doi.org/10.1021/ac062383a.

    Article  CAS  Google Scholar 

  9. Wong YL, Chen X, Li W, Wang Z, Hung YL, Wu R, et al. Differentiation of isomeric ginsenosides by using electron-induced dissociation mass spectrometry. Anal Chem. 2016;88(11):5590–4. https://doi.org/10.1021/acs.analchem.6b00908.

    Article  CAS  Google Scholar 

  10. Jora M, Burns AP, Ross RL, Lobue PA, Zhao R, Palumbo CM, et al. Differentiating positional isomers of nucleoside modifications by higher-energy collisional dissociation mass spectrometry (HCD MS). J Am Soc Mass Spectrom. 2018;29(8):1745–56. https://doi.org/10.1007/s13361-018-1999-6.

    Article  CAS  Google Scholar 

  11. Han J, Li P, Cai W, Shao X. Fast determination of ginsenosides in ginseng by high-performance liquid chromatography with chemometric resolution. J Sep Sci. 2014;37(16):2126–30. https://doi.org/10.1002/jssc.201400403.

    Article  CAS  Google Scholar 

  12. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep. 2011;28(3):467–95. https://doi.org/10.1039/c0np00057d.

    Article  CAS  Google Scholar 

  13. Jian-Fang Cui IB, Peter Eneroth. Gas chromatographic-mass spectrometric determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations. Journal of Chromatography B: Biomedical Sciences and Applications. 1997;2:349–55. https://doi.org/10.1016/S0378-4347(96)00304-0.

  14. Wang C-Z, Wu JA, McEntee E, Yuan C-S. Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography. J Agric Food Chem. 2006;54(6):2261–6. https://doi.org/10.1021/jf052993w.

    Article  CAS  Google Scholar 

  15. Baek SH, Bae ON, Park JH. Recent methodology in ginseng analysis. J Ginseng Res. 2012;36(2):119–34. https://doi.org/10.5142/jgr.2012.36.2.119.

    Article  CAS  Google Scholar 

  16. Cheng M, Shu H, Peng Y, Feng X, Yan G, Zhang L, et al. Specific analysis of alpha-2,3-sialylated N-glycan linkage isomers by microchip capillary electrophoresis-mass spectrometry. Anal Chem. 2021;93(13):5537–46. https://doi.org/10.1021/acs.analchem.1c00064.

    Article  CAS  Google Scholar 

  17. Poad BLJ, Zheng X, Mitchell TW, Smith RD, Baker ES, Blanksby SJ. Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal Chem. 2018;90(2):1292–300. https://doi.org/10.1021/acs.analchem.7b04091.

    Article  CAS  Google Scholar 

  18. Zhu M, Bendiak B, Clowers B, Hill HH Jr. Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal Bioanal Chem. 2009;394(7):1853–67. https://doi.org/10.1007/s00216-009-2865-y.

    Article  CAS  Google Scholar 

  19. Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91(7):4266–90. https://doi.org/10.1021/acs.analchem.9b00807.

    Article  CAS  Google Scholar 

  20. Li LH, Hsieh HY, Hsu CC. Clinical application of ambient ionization mass spectrometry. Mass Spectrom (Tokyo). 2017;6(Spec Iss):S0060. https://doi.org/10.5702/massspectrometry.S0060.

  21. Newsome GA, Ackerman LK, Johnson KJ. Humidity effects on fragmentation in plasma-based ambient ionization sources. J Am Soc Mass Spectrom. 2016;27(1):135–43. https://doi.org/10.1007/s13361-015-1259-y.

    Article  CAS  Google Scholar 

  22. Gross JH. Direct analysis in real time–a critical review on DART-MS. Anal Bioanal Chem. 2014;406(1):63–80. https://doi.org/10.1007/s00216-013-7316-0.

    Article  CAS  Google Scholar 

  23. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302. https://doi.org/10.1021/ac050162j.

    Article  CAS  Google Scholar 

  24. Ma S, Chen F, Zhang M, Yuan H, Ouyang G, Zhao W, et al. Carboxyl-based CPMP tag for ultrasensitive analysis of disaccharides by negative tandem mass spectrometry. Anal Chem. 2022;94(27):9557–63. https://doi.org/10.1021/acs.analchem.2c00287.

    Article  CAS  Google Scholar 

  25. Petucci C, Diffendal J, Kaufman D, Mekonnen B, Terefenko G, Musselman B. Direct analysis in real time for reaction monitoring in drug discovery. Anal Chem. 2007;79(13):5064–70. https://doi.org/10.1021/ac070443m.

    Article  CAS  Google Scholar 

  26. Chernetsova ES, Morlock GE, Revelsky IA. DART mass spectrometry and its applications in chemical analysis. Russ Chem Rev. 2011;80(3):235–55. https://doi.org/10.1070/RC2011v080n03ABEH004194.

    Article  CAS  Google Scholar 

  27. Tang F, Guo C, Ma X, Zhang J, Su Y, Tian R, et al. Rapid in situ profiling of lipid C horizontal lineC location isomers in tissue using ambient mass spectrometry with photochemical reactions. Anal Chem. 2018;90(9):5612–9. https://doi.org/10.1021/acs.analchem.7b04675.

    Article  CAS  Google Scholar 

  28. Zhang D, Latif M, Gamez G. Instantaneous differentiation of functional isomers via reactive flowing atmospheric pressure afterglow mass spectrometry. Anal Chem. 2021;93(29):9986–94. https://doi.org/10.1021/acs.analchem.0c04867.

    Article  CAS  Google Scholar 

  29. Pilsoo Kang YM, Iveta Klouckova, and Milos V. Novotny. Solid-phase permethylation of glycans for mass spectrometric

  30. analysis. Rapid Commun Mass Spectrom. 2005;19(23): 3421–3428. https://doi.org/10.1002/rcm.2210.

  31. He Y, Liu W, Su R, Xiu Y, Pei J. Detection of saponins and oligosaccharides in herbs using direct analysis in real-time mass spectrometry. Chem Res Chin Univ. 2017;33(2):172–8. https://doi.org/10.1007/s40242-017-6297-5.

    Article  CAS  Google Scholar 

  32. Tanczos I, Schwarzinger C, Schmidt H, Balla J. THM-GC/MS analysis of model uronic acids of pectin and hemicelluloses. J Anal Appl Pyrol. 2003;68–69:151–62. https://doi.org/10.1016/s0165-2370(03)00064-0.

    Article  Google Scholar 

  33. Wang J, Zhou Y, Wang M, Bi W, Li H, Chen DDY. High-throughput analysis for artemisinins with deep eutectic solvents mechanochemical extraction and direct analysis in real time mass spectrometry. Anal Chem. 2018;90(5):3109–17. https://doi.org/10.1021/acs.analchem.7b04060.

    Article  CAS  Google Scholar 

  34. Jiang Q, Dai D, Li H, Chen DDY. Simultaneous determination of multiple components in cigarettes by mechanochemical extraction and direct analysis in real time mass spectrometry in minutes. Anal Chim Acta. 2019;1057:70–9. https://doi.org/10.1016/j.aca.2019.01.024.

    Article  CAS  Google Scholar 

  35. Wang Y, Li C, Huang L, Liu L, Guo Y, Ma L, et al. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry. Anal Chim Acta. 2014;845:70–6. https://doi.org/10.1016/j.aca.2014.06.014.

    Article  CAS  Google Scholar 

  36. Su R, Yu W, Sun K, Yang J, Chen C, Lian W, et al. The ion source of nitrogen direct analysis in real-time mass spectrometry as a highly efficient reactor: generation of reactive oxygen species. J Am Soc Mass Spectrom. 2019;30(4):581–7. https://doi.org/10.1007/s13361-019-02132-7.

    Article  CAS  Google Scholar 

  37. Fabbri D, Helleur R. Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J Anal Appl Pyrol. 1999;49(1–2):277–93. https://doi.org/10.1016/s0165-2370(98)00085-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant No. 21904067 and the Jiangsu Agricultural Science and Technology Innovation Fund, China (Grant No. SCX (20) 3083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1484 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, R., Li, H., Jiang, Q. et al. Characterization of ginsenoside structural isomers from mixtures using in situ methylation with direct analysis in real-time ionization tandem mass spectrometry. Anal Bioanal Chem 415, 887–897 (2023). https://doi.org/10.1007/s00216-022-04482-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04482-w

Keywords

Navigation