Skip to main content
Log in

Finding the tiny plastic needle in the haystack: how field flow fractionation can help to analyze nanoplastics in food

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. EFSA Contam Panel (EFSA Panel on Contaminants in the Food Chain). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14:4501–31. https://doi.org/10.2903/j.efsa.2016.4501.

    Article  Google Scholar 

  2. Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019;53:1748–65. https://doi.org/10.1021/acs.est.8b05512.

    Article  Google Scholar 

  3. Paul MB, Fahrenson CC, Givelet L, Herrmann T, Loeschner K, Böhmert L, Thünemann AF, Braeuning A, Sieg H. Beyond microplastics - investigation on health impacts of submicro- and nanoplastic particles after oral uptake in vitro. Microplastics and Nanoplastics. 2022;2:16. https://doi.org/10.1186/s43591-022-00036-0.

    Article  Google Scholar 

  4. Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, Liebmann B. Detection of various microplastics in human stool. Ann Intern Med. 2019;171:453–7. https://doi.org/10.7326/M19-0618.

    Article  Google Scholar 

  5. Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. https://doi.org/10.1016/j.envint.2022.107199.

    Article  Google Scholar 

  6. European Commission (2022) Commission Recommendation of 10.6.2022 on the Definition of Nanomaterial. https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. Accessed 14 Jun 2022.

  7. Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, Herrling MP, Hess MC, Ivleva NP, Lusher AL, Wagner M. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 2019;53:1039–47. https://doi.org/10.1021/acs.est.8b05297.

    Article  Google Scholar 

  8. Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, Rio-Echevarria IM, Van den Eede G. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A. 2019;36:639–73. https://doi.org/10.1080/19440049.2019.1583381.

    Article  Google Scholar 

  9. Liu Q, Chen Z, Chen Y, Yang F, Yao W, Xie Y. Microplastics and nanoplastics: emerging contaminants in food. J Agric Food Chem. 2021;69:10450–68. https://doi.org/10.1021/acs.jafc.1c04199.

    Article  Google Scholar 

  10. Ivleva NP. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev. 2021;121:11886–936. https://doi.org/10.1021/acs.chemrev.1c00178.

    Article  Google Scholar 

  11. Alexy P, Anklam E, Emans T, Furfari A, Galgani F, Hanke G, Koelmans A, Pant R, Saveyn H, Sokull Kluettgen B. Managing the analytical challenges related to micro- and nanoplastics in the environment and food: filling the knowledge gaps. Food Addit Contam Part A. 2020;37:1–10. https://doi.org/10.1080/19440049.2019.1673905.

    Article  Google Scholar 

  12. Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal Chem. 2019;112:52–65. https://doi.org/10.1016/j.trac.2018.12.014.

    Article  Google Scholar 

  13. Mintenig SM, Bäuerlein PS, Koelmans AA, Dekker SC, van Wezel AP. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ Sci Nano. 2018;5:1640–9. https://doi.org/10.1039/C8EN00186C.

    Article  Google Scholar 

  14. Chang Y-S, Chou S-H, Jhang Y-J, Wu T-S, Lin L-X, Soo Y-L, Hsiao I-L. Extraction method development for nanoplastics from oyster and fish tissues. Sci Total Environ. 2022;814:152675. https://doi.org/10.1016/j.scitotenv.2021.152675.

    Article  Google Scholar 

  15. von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem. 2011;30:425–36. https://doi.org/10.1016/j.trac.2010.11.012.

    Article  Google Scholar 

  16. Podzimek S, Johann C. Asymmetric flow field-flow fractionation: current status, possibilities, analytical limitations and future trends. Chromatographia. 2021;84:531–4. https://doi.org/10.1007/s10337-021-04035-w.

    Article  Google Scholar 

  17. Contado C, Dalpiaz A, Leo E, Zborowski M, Williams PS. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres. J Chromatogr A. 2007;1157:321–35. https://doi.org/10.1016/j.chroma.2007.04.038.

    Article  Google Scholar 

  18. Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, Gigault J. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017;51:13689–97. https://doi.org/10.1021/acs.est.7b03667.

    Article  Google Scholar 

  19. Wahl A, Le Juge C, Davranche M, El Hadri H, Grassl B, Reynaud S, Gigault J. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere. 2021;262:127784. https://doi.org/10.1016/j.chemosphere.2020.127784.

    Article  Google Scholar 

  20. Materić D, Kasper-Giebl A, Kau D, Anten M, Greilinger M, Ludewig E, van Sebille E, Röckmann T, Holzinger R. Micro- and nanoplastics in Alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range. Environ Sci Technol. 2020;54:2353–9. https://doi.org/10.1021/acs.est.9b07540.

    Article  Google Scholar 

  21. Materić D, Kjær HA, Vallelonga P, Tison J-L, Röckmann T, Holzinger R. Nanoplastics measurements in northern and southern polar ice. Environ Res. 2022;208:112741. https://doi.org/10.1016/j.envres.2022.112741.

    Article  Google Scholar 

  22. Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol. 2019;53:12300–10. https://doi.org/10.1021/acs.est.9b02540.

    Article  Google Scholar 

  23. Li D, Shi Y, Yang L, Xiao L, Kehoe DK, Gun’ko YK, Boland JJ, Wang JJ,. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food. 2020;1:746–54. https://doi.org/10.1038/s43016-020-00171-y.

    Article  Google Scholar 

  24. Zangmeister CD, Radney JG, Benkstein KD, Kalanyan B. Common single-use consumer plastic products release trillions of sub-100 nm nanoparticles per liter into water during normal use. Environ Sci Technol. 2022;56:5448–55. https://doi.org/10.1021/acs.est.1c06768.

    Article  Google Scholar 

  25. Busse K, Ebner I, Humpf H-U, Ivleva N, Kaeppler A, Oßmann BE, Schymanski D. Comment on “Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea.” Environ Sci Technol. 2020;54:14134–5. https://doi.org/10.1021/acs.est.0c03182.

    Article  Google Scholar 

  26. Clark NJ, Khan FR, Mitrano DM, Boyle D, Thompson RC (2022) Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environ Int 159: .https://doi.org/10.1016/j.envint.2021.106994

  27. Luo Y, Li L, Feng Y, Li R, Yang J, Peijnenburg WJGM, Tu C. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat Nanotechnol. 2022;17:424–31. https://doi.org/10.1038/s41565-021-01063-3.

    Article  Google Scholar 

  28. Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, Shruti VC. Branded milks – are they immune from microplastics contamination? Sci Total Environ. 2020;714:136823. https://doi.org/10.1016/j.scitotenv.2020.136823.

    Article  Google Scholar 

  29. Gigault J, El Hadri H, Reynaud S, Deniau E, Grassl B. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Anal Bioanal Chem. 2017;409:6761–9. https://doi.org/10.1007/s00216-017-0629-7.

    Article  Google Scholar 

  30. Paul MB, Fahrenson C, Givelet L, Herrmann T, Loeschner K, Böhmert L, Thünemann AF, Braeuning A, Sieg H. Beyond microplastics - investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro. Microplastics and Nanoplastics. 2022;2:16. https://doi.org/10.1186/s43591-022-00036-0.

    Article  Google Scholar 

  31. Correia M, Loeschner K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal Bioanal Chem. 2018;410:5603–15. https://doi.org/10.1007/s00216-018-0919-8.

    Article  Google Scholar 

  32. Valsesia A, Parot J, Ponti J, Mehn D, Marino R, Melillo D, Muramoto S, Verkouteren M, Hackley VA, Colpo P. Detection, counting and characterization of nanoplastics in marine bioindicators: a proof of principle study. Microplastics and Nanoplastics. 2021;1:5. https://doi.org/10.1186/s43591-021-00005-z.

    Article  Google Scholar 

  33. Adkins GB, Sun E, Coreas R, Zhong W. Asymmetrical flow field flow fractionation coupled to nanoparticle tracking analysis for rapid online characterization of nanomaterials. Anal Chem. 2020;92:7071–8. https://doi.org/10.1021/acs.analchem.0c00406.

    Article  Google Scholar 

  34. Nischwitz V, Gottselig N, Missong A, Meyn T, Klumpp E. Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts. J Anal At Spectrom. 2016;31:1858–68. https://doi.org/10.1039/C6JA00027D.

    Article  Google Scholar 

  35. Nischwitz V, Gottselig N, Missong A, Klumpp E, Braun M. Extending the capabilities of field flow fractionation online with ICP-MS for the determination of particulate carbon in latex and charcoal. J Anal At Spectrom. 2018;33:1363–71. https://doi.org/10.1039/C8JA00101D.

    Article  Google Scholar 

  36. Mowla M, Shakiba S, Louie SM. Selective quantification of nanoplastics in environmental matrices by asymmetric flow field-flow fractionation with total organic carbon detection. Chem Commun. 2021;57:12940–3. https://doi.org/10.1039/D1CC04852J.

    Article  Google Scholar 

  37. Schwaferts C, Sogne V, Welz R, Meier F, Klein T, Niessner R, Elsner M, Ivleva NP. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers. Anal Chem. 2020;92:5813–20. https://doi.org/10.1021/acs.analchem.9b05336.

    Article  Google Scholar 

  38. Gonzalez de Vega R, Goyen S, Lockwood TE, Doble PA, Camp EF, Clases D. Characterisation of microplastics and unicellular algae in seawater by targeting carbon via single particle and single cell ICP-MS. Anal Chim Acta. 2021;1174:338737. https://doi.org/10.1016/j.aca.2021.338737.

    Article  Google Scholar 

  39. Bolea-Fernandez E, Rua-Ibarz A, Velimirovic M, Tirez K, Vanhaecke F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J Anal At Spectrom. 2020;35:455–60. https://doi.org/10.1039/C9JA00379G.

    Article  Google Scholar 

  40. Laborda F, Trujillo C, Lobinski R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope. Talanta. 2021;221:121486. https://doi.org/10.1016/j.talanta.2020.121486.

    Article  Google Scholar 

  41. Marigliano L, Grassl B, Szpunar J, Reynaud S, Jiménez-Lamana J. Nanoplastic labelling with metal probes: analytical strategies for their sensitive detection and quantification by ICP mass spectrometry. Molecules. 2021;26:7093. https://doi.org/10.3390/molecules26237093.

    Article  Google Scholar 

  42. Lai Y, Dong L, Li Q, Li P, Hao Z, Yu S, Liu J. Counting nanoplastics in environmental waters by single particle inductively coupled plasma mass spectroscopy after cloud-point extraction and in situ labeling of gold nanoparticles. Environ Sci Technol. 2021;55:4783–91. https://doi.org/10.1021/acs.est.0c06839.

    Article  Google Scholar 

  43. Barber A, Kly S, Moffitt MG, Rand L, Ranville JF. Coupling single particle ICP-MS with field-flow fractionation for characterizing metal nanoparticles contained in nanoplastic colloids. Environ Sci Nano. 2020;7:514–24. https://doi.org/10.1039/C9EN00637K.

    Article  Google Scholar 

  44. Vera CC, Trimborn A, Hinz K-P, Spengler B. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method. Rapid Commun Mass Spectrom. 2005;19:133–46. https://doi.org/10.1002/rcm.1753.

    Article  Google Scholar 

  45. Hiraoka K. Laser spray: electric field-assisted matrix-assisted laser desorption/ionization. J Mass Spectrom. 2004;39:341–50. https://doi.org/10.1002/jms.621.

    Article  Google Scholar 

  46. Zhou X, Hao L, Wang H, Li Y, Liu J. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography–mass spectrometry. Anal Chem. 2019;91:1785–90. https://doi.org/10.1021/acs.analchem.8b04729.

    Article  Google Scholar 

  47. Schirinzi GF, Llorca M, Seró R, Moyano E, Barceló D, Abad E, Farré M. Trace analysis of polystyrene microplastics in natural waters. Chemosphere. 2019;236:124321. https://doi.org/10.1016/j.chemosphere.2019.07.052.

    Article  Google Scholar 

  48. Wang Z, Saadé NK, Ariya PA. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: fresh falling urban snow. Environ Pollut. 2021;276:116698. https://doi.org/10.1016/j.envpol.2021.116698.

    Article  Google Scholar 

  49. Tian L, Skoczynska E, Siddhanti D, van Putten R-J, Leslie HA, Gruter G-JM. Quantification of polyethylene terephthalate microplastics and nanoplastics in sands, indoor dust and sludge using a simplified in-matrix depolymerization method. Mar Pollut Bull. 2022;175:113403. https://doi.org/10.1016/j.marpolbul.2022.113403.

    Article  Google Scholar 

Download references

Acknowledgements

M. Velimirovic is a senior postdoctoral fellow of the Research Foundation – Flanders (FWO 12ZD120N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Loeschner.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loeschner, K., Vidmar, J., Hartmann, N.B. et al. Finding the tiny plastic needle in the haystack: how field flow fractionation can help to analyze nanoplastics in food. Anal Bioanal Chem 415, 7–16 (2023). https://doi.org/10.1007/s00216-022-04321-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04321-y

Keywords

Navigation