Skip to main content
Log in

Improved profiling of low molecular weight serum proteome for gastric carcinoma by data-independent acquisition

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Low molecular weight proteins (LMWPs) in the bloodstream participate in various biological processes and are closely associated with disease status, whereas identification of serous LMWPs remains a great technical challenge due to the wide dynamic range of protein components. In this study, we constructed an integrated LMWP library by combining the LMWPs obtained by three enrichment methods (50% ACN, 20% ACN + 20 mM ABC, and 30 kDa) and their fractions identified by the data-dependent acquisition method. With this newly constructed library, we comprehensively profiled LMWPs in serum using data-independent acquisition and reliably achieved quantitative results for 75% serous LMWPs. When applying this strategy to quantify LMWPs in human serum samples, we could identify 405 proteins on average per sample, of which 136 proteins were with a MW less than 30 kDa and 293 proteins were with a MW less than 65 kDa. Of note, pre- and post-operative gastric carcinoma (GC) patients showed differentially expressed serous LWMPs, which was also different from the pattern of LWMP expression in healthy controls. In conclusion, our results showed that LMWPs could efficiently distinguish GC patients from healthy controls as well as between pre- and post-operative statuses, and more importantly, our newly developed LMWP profiling platform could be used to discover candidate LMWP biomarkers for disease diagnosis and status monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data were deposited to the ProteomeXchange Consortium via PRIDE with the identifier PXD034184.

References

  1. Zhang S, Sun K, Zheng R, Zeng H, Wang S, Chen R, Wei W, He J. Cancer incidence and mortality in China, 2015. J Natl Cancer Cen. 2021;1(1):2–11.

    Article  CAS  Google Scholar 

  2. Smyth EC, Nilsson M, Grabsch HI, van Grieken NCT, Lordick F. Gastric cancer. The Lancet. 2020;396(10251):635–48.

    Article  CAS  Google Scholar 

  3. Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I, Tsujitani S, Ono H, Tanabe S, Fukagawa T, Nunobe S, Kakeji Y, Nashimoto A. Registration Committee of the Japanese Gastric Cancer, A., Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer. 2018;21(1):144–54.

    Article  PubMed  Google Scholar 

  4. Zong L, Abe M, Seto Y, Ji J. The challenge of screening for early gastric cancer in China. Lancet. 2016;388(10060):2606.

    Article  PubMed  Google Scholar 

  5. Shimura T, Dayde D, Wang H, Okuda Y, Iwasaki H, Ebi M, Kitagawa M, Yamada T, Yamada T, Hanash SM, Taguchi A, Kataoka H. Novel urinary protein biomarker panel for early diagnosis of gastric cancer. Br J Cancer. 2020;123(11):1656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi X-J, Wei Y, Ji B. Systems Biology of Gastric Cancer: Perspectives on the Omics-Based Diagnosis and Treatment. Front Mol Biosci. 2020;7:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev. 2020;120(7):3328–80.

    Article  CAS  PubMed  Google Scholar 

  8. Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik Y-K, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun. 2020;11(1):5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, Deutsch EW, Schwenk JM. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res. 2019;18(12):4085–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huo B, Chen M, Chen J, Li Y, Zhang W, Wang J, Qin W, Qian X. A sequential separation strategy for facile isolation and comprehensive analysis of human urine N-glycoproteome. Anal Bioanal Chem. 2018;410(28):7305–12.

    Article  CAS  PubMed  Google Scholar 

  11. Keshishian H, Burgess MW, Specht H, Wallace L, Clauser KR, Gillette MA, Carr SA. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nat Protoc. 2017;12(8):1683–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schuster-Little N, Madera S, Whelan R. Developing a mass spectrometry–based assay for the ovarian cancer biomarker CA125 (MUC16) using suspension trapping (STrap). Anal Bioanal Chem. 2020;412(24):6361–70.

    Article  CAS  PubMed  Google Scholar 

  13. Bruderer R, Muntel J, Müller S, Bernhardt OM, Gandhi T, Cominetti O, Macron C, Carayol J, Rinner O, Astrup A, Saris WHM, Hager J, Valsesia A, Dayon L, Reiter L. Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance. Mol Cell Proteomics. 2019;18(6):1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tognetti M, Sklodowski K, Müller S, Kamber D, Muntel J, Bruderer R, Reiter L. Biomarker Candidates for Tumors Identified from Deep-Profiled Plasma Stem Predominantly from the Low Abundant Area. bioRxiv 2021 463153

  15. Periasamy P, Rajandran S, Ziegman R, Casey M, Nakamura K, Kore H, Datta K, Gowda H. A simple organic solvent precipitation method to improve detection of low molecular weight proteins. Proteomics. 2021;21(19):2100152.

    Article  CAS  Google Scholar 

  16. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: Written in blood. Nature. 2003;425(6961):905–905.

    Article  CAS  PubMed  Google Scholar 

  17. Harper RG, Workman SR, Schuetzner S, Timperman AT, Sutton JN. Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis. 2004;25(9):1299–306.

    Article  CAS  PubMed  Google Scholar 

  18. Li N, Zhou Y, Wang J, Niu L, Zhang Q, Sun L, Ding X, Guo X, Xie Z, Zhu N, Zhang M, Chen X, Cai T, Yang F. Sequential Precipitation and Delipidation Enables Efficient Enrichment of Low-Molecular Weight Proteins and Peptides from Human Plasma. J Proteome Res. 2020;19(8):3340–51.

    Article  CAS  PubMed  Google Scholar 

  19. Baghalabadi V, Doucette AA. Mass spectrometry profiling of low molecular weight proteins and peptides isolated by acetone precipitation. Anal Chim Acta. 2020;1138:38–48.

    Article  CAS  PubMed  Google Scholar 

  20. Das L, Murthy V, Varma AK. Comprehensive Analysis of Low Molecular Weight Serum Proteome Enrichment for Mass Spectrometric Studies. ACS Omega. 2020;5(44):28877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Laganà A. Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach. Anal Chim Acta. 2012;740:58–65.

    Article  CAS  PubMed  Google Scholar 

  22. Dong M, Lih T-SM, Ao M, Hu Y, Chen S-Y, Eguez RV, Zhang H. Data-Independent Acquisition-Based Mass Spectrometry (DIA-MS) for Quantitative Analysis of Intact N-Linked Glycopeptides. Anal Chem. 2021;93(41):13774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin L, Zheng J, Zheng F, Cai Z, Yu Q. Advancing serum peptidomic profiling by data-independent acquisition for clear-cell renal cell carcinoma detection and biomarker discovery. J Proteomics. 2020;215:103671.

    Article  CAS  PubMed  Google Scholar 

  24. Nanjappa V, Thomas JK, Marimuthu A, Muthusamy B, Radhakrishnan A, Sharma R, Ahmad Khan A, Balakrishnan L, Sahasrabuddhe NA, Kumar S, Jhaveri BN, Sheth KV, Kumar Khatana R, Shaw PG, Srikanth SM, Mathur PP, Shankar S, Nagaraja D, Christopher R, Mathivanan S, Raju R, Sirdeshmukh R, Chatterjee A, Simpson RJ, Harsha HC, Pandey A, Prasad TSK. Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucleic Acids Res. 2014;42(D1):D959–65.

    Article  CAS  PubMed  Google Scholar 

  25. Mahboob S, Mohamedali A, Ahn SB, Schulz-Knappe P, Nice E, Baker MS. Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteomics. 2015;127(Pt B):300–9.

    Article  CAS  PubMed  Google Scholar 

  26. Greening DW, Simpson RJ. A centrifugal ultrafiltration strategy for isolating the low-molecular weight (≤25K) component of human plasma proteome. J Proteomics. 2010;73(3):637–48.

    Article  CAS  PubMed  Google Scholar 

  27. Harney DJ, Hutchison AT, Su Z, Hatchwell L, Heilbronn LK, Hocking S, James DE, Larance M. Small-protein Enrichment Assay Enables the Rapid, Unbiased Analysis of Over 100 Low Abundance Factors from Human Plasma. Mol Cell Proteomics. 2019;18(9):1899–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang H-L, Stasyk T, Morandell S, Mogg M, Schreiber M, Feuerstein I, Huck CW, Stecher G, Bonn GK, Huber LA. Enrichment of low-abundant serum proteins by albumin/immunoglobulin G immunoaffinity depletion under partly denaturing conditions. Electrophoresis. 2005;26(14):2843–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cho K-C, Oh S, Wang Y, Rosenthal LS, Na CH, Zhang H. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins. J Proteome Res. 2021;20(9):4284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R, Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis *. Mol Cell Proteomics. 2012, 11, (6).

  31. Li F, Yang B, Liu Y, Tang T, Wang C, Li M, Lv S, Qi Q, Liu H, Shi Z, Wu H, Wang X. Acupuncture Regulates Serum Differentially Expressed Proteins in Patients with Chronic Atrophic Gastritis: A Quantitative iTRAQ Proteomics Study. Evid-Based Compl Alt. 2021;2021:9962224.

    Google Scholar 

  32. Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol. 2019;54(5):1719–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou B, Zhou Z, Chen Y, Deng H, Cai Y, Rao X, Yin Y, Rong L. Plasma proteomics-based identification of novel biomarkers in early gastric cancer. Clin biochem. 2020;76:5–10.

    Article  CAS  PubMed  Google Scholar 

  34. Yun X, Yin Z, Fan J, Chen N, Ding M, Zhang Y, Wang X. Prognostic Value of Myocardial Enzymes and Therapeutic Potential of Cardioprotective Agents in Chronic Lymphocytic Leukemia Patients with Cardiovascular Comorbidities. Blood. 2021;138:4689.

    Article  Google Scholar 

  35. Gao L, Li Q. Identification of Novel Pyroptosis-Related lncRNAs Associated with the Prognosis of Breast Cancer Through Interactive Analysis. Cancer Manag Res. 2021;13:7175–86.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ding X-Q, Wang Z-Y, Xia D, Wang R-X, Pan X-R, Tong J-H. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol. 2020;10:1113.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tuhkuri A, Saraswat M, Mäkitie A, Mattila P, Silén R, Dickinson A, Carpén T, Tohmola T, Joenväärä S, Renkonen S. Patients with early-stage oropharyngeal cancer can be identified with label-free serum proteomics. Brit J Cancer. 2018;119(2):200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y-S, Luo X-Y, Li Q-R, Li H, Li C, Ni H, Li R-X, Wang R, Hu H-C, Pan Y-J, Chen H-Q, Zeng R. Shotgun and targeted proteomics reveal that pre-surgery serum levels of LRG1, SAA, and C4BP may refine prognosis of resected squamous cell lung cancer. J Mol Cell Biol. 2012;4(5):344–7.

    Article  CAS  PubMed  Google Scholar 

  39. Sogawa K, Takano S, Iida F, Satoh M, Tsuchida S, Kawashima Y, Yoshitomi H, Sanda A, Kodera Y, Takizawa H, Mikata R, Ohtsuka M, Shimizu H, Miyazaki M, Yokosuka O, Nomura F. Identification of a novel serum biomarker for pancreatic cancer, C4b-binding protein α-chain (C4BPA) by quantitative proteomic analysis using tandem mass tags. Brit J Cancer. 2016;115(8):949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian W-D, Li J-Z, Hu S-W, Peng X-W, Li G, Liu X, Chen H-H, Xu X, Li X-P. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell carcinoma. Int J Clin Exp Pathol. 2015;8(8):9021–31.

    PubMed  PubMed Central  Google Scholar 

  41. Chantaraamporn J, Chokchaichamnankit D, Prasongsook N, Srisomsap C, Svasti J, Champattanachai V. Utilization of lectin capture strategy combined with label-free quantitative proteomics analysis reveals differential expression levels of glycoproteins from metastatic colorectal cancer patients. In The 6th International Conference on Biochemistry and Molecular Biology (BMB2018), 2018.

  42. Li X, Chen W, Yang C, Huang Y, Jia J, Xu R, Guan S, Ma R, Yang H, Xie L. IGHG1 upregulation promoted gastric cancer malignancy via AKT/GSK-3β/β-Catenin pathway. Cancer Cell Int. 2021;21(1):397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Y, Wang P, Ye D, Bai X, Zeng X, Zhao Q, Zhang Z. IGHG1 induces EMT in gastric cancer cells by regulating TGF-β/SMAD3 signaling pathway. J Cancer. 2021;12(12):3458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao D, Sun T, Zhang X, Guo Y, Yu D, Yang M, Tan W, Wang G, Lin D. Role of CD14 Promoter Polymorphisms in Helicobacter pylori Infection-Related Gastric Carcinoma. Clin Cancer Res. 2007;13(8):2362.

    Article  CAS  PubMed  Google Scholar 

  45. Pushpalakshmi G, Ananthi S, Ravi S, Vattem C, Karunakaran PRRJ, Jayaraman M, Arunachalam P. Significance of Complement factor and Immunoglobulin in Helicobacter pylori induced Gastric Cancer. Euro J Mol Clin. 2021;8(3):128–42.

    Google Scholar 

  46. Chantaraamporn J, Champattanachai V, Khongmanee A, Verathamjamras C, Prasongsook N, Mingkwan K, Luevisadpibul V, Chutipongtanate S, Svasti J. Glycoproteomic Analysis Reveals Aberrant Expression of Complement C9 and Fibronectin in the Plasma of Patients with Colorectal Cancer. Proteomes. 2020;8(3):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo W, He X, Ni J, Ma L, Cheng X, Wang C, Chen X, Wang Y. High serpin family A member 10 (SERPINA10) expression confers platinum sensitivity and is associated with survival benefit in high-grade serous ovarian cancer: based on quantitative proteomic analysis. Front Oncol. 2021, 4909.

  48. Leja J, Essaghir A, Essand M, Wester K, Öberg K, Tötterman TH, Lloyd R, Vasmatzis G, Demoulin J-B, Giandomenico V. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Modern Pathol. 2009;22(2):261–72.

    Article  CAS  Google Scholar 

  49. Chalubinska-Fendler J, Graczyk L, Piotrowski G, Wyka K, Nowicka Z, Tomasik B, Fijuth J, Kozono D, Fendler W. Lipopolysaccharide-Binding Protein Is an Early Biomarker of Cardiac Function After Radiation Therapy for Breast Cancer. Int J Radiat Oncol. 2019;104(5):1074–83.

    Article  CAS  Google Scholar 

  50. García de Guadiana-Romualdo L, Español-Morales I, Cerezuela-Fuentes P, Consuegra-Sánchez L, Hernando-Holgado A, Esteban-Torrella P, Jiménez-Santos E, Viqueira-González M, de Béjar-Almira Á, Albaladejo-Otón MD. Value of lipopolysaccharide binding protein as diagnostic marker of infection in adult cancer patients with febrile neutropenia: comparison with C-reactive protein, procalcitonin, and interleukin 6. Supportive Care Cancer. 2015;23(7):2175–21820.

    Article  Google Scholar 

  51. Méhul B, Perrin A, Grisendi K, Galindo AN, Dayon L, Ménigot C, Rival Y, Voegel JJ. Mass spectrometry and DigiWest technology emphasize protein acetylation profile from Quisinostat-treated HuT78 CTCL cell line. J Proteomics. 2018;187:126–43.

    Article  PubMed  CAS  Google Scholar 

  52. Oliver D, Ji H, Liu P, Gasparian A, Gardiner E, Lee S, Zenteno A, Perinskaya LO, Chen M, Buckhaults P, Broude E, Wyatt MD, Valafar H, Peña E, Shtutman M. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep. 2017;7(1):43023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamamoto M, Takahashi T, Serada S, Sugase T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Naka T, Mori M, Doki Y. Overexpression of leucine-rich α2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer. Cancer Sci. 2017;108(10):2052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He L, Feng A, Guo H, Huang H, Deng Q, Zhao E, Yang M. LRG1 mediated by ATF3 promotes growth and angiogenesis of gastric cancer by regulating the SRC/STAT3/VEGFA pathway. Gastric Cancer. 2022;25:527–41.

    Article  CAS  PubMed  Google Scholar 

  55. Cao P, Wu S, Guo W, Zhang Q, Gong W, Li Q, Zhang R, Dong X, Xu S, Liu Y, Shi S, Huang Y, Zhang Y. Precise pathological classification of non-small cell lung adenocarcinoma and squamous carcinoma based on an integrated platform of targeted metabolome and lipidome. Metabolomics. 2021;17(11):98.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from the National Natural Science Foundation of Guangdong Province (Grant No. 2020A1515010576, No. 2018A0303100023), the National Natural Science Foundation of China (Grant No. 22004086), and the Shenzhen Basic Discipline Layout Project (Grant No. JCYJ20210324115601005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Qin, Lin Lin or Wenlan Liu.

Ethics declarations

Ethics approval

Study protocol was approved by the Ethics Committee of Shenzhen Second People’s Hospital and written informed consent was obtained from each participant.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, M., Zhang, X. et al. Improved profiling of low molecular weight serum proteome for gastric carcinoma by data-independent acquisition. Anal Bioanal Chem 414, 6403–6417 (2022). https://doi.org/10.1007/s00216-022-04196-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04196-z

Keywords

Navigation