Skip to main content

Advertisement

Log in

Aptamer and bifunctional enzyme co-functionalized MOF-derived porous carbon for low-background electrochemical aptasensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To improve the efficiency of aptasensors, a signal amplification strategy by coupling tyrosinase (Tyr)–triggered redox cycling with nanoscale porous carbon (NCZIF) has been proposed. The NCZIF was obtained by calcining ZIF-8 crystals in an inert atmosphere. It had high surface areas, great biocompatibility, and ease of functionalization, which was beneficial for immobilizing sufficient Tyr and aptamer covalently. When the target prostate-specific antigen (PSA) was present, the NCZIF functionalized with Tyr and an aptamer bound to the aptamer-modified Au electrode specifically through the sandwich structure. Then, Tyr acted to oxidize the electroinactive phenol, which led to low-background signal, in the substrate to electroactive catechol, and triggered the redox cycling under the action of NADH. The low detection limit of the proposed electrochemical aptasensor for PSA was 0.01 ng mL−1, and the wide detection range was from 0.01 to 50 ng mL−1. The use of ZIF-8 derived porous carbon and Tyr-triggered redox cycling system provided a promising solution for the development of simple, rapid, reliable, and low-background aptasensing methods, which had great potential in the field of disease diagnosis and biomedicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang ZZ, Zhang CY. Highly sensitive detection of protein with aptamer-based target-triggering two-stage amplification. Anal. Chem. 2012;84:1623–9.

    Article  CAS  Google Scholar 

  2. Vargas AJ, Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer. 2016;16:525–37.

    Article  CAS  Google Scholar 

  3. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015;115:10530–74.

    Article  CAS  Google Scholar 

  4. Gan SD, Patel KR. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol. 2013;133:1–3.

    Article  CAS  Google Scholar 

  5. Malhotra R, Patel V, Vaque JP, Gutkind JS, Rusling JF. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 2010;82:3118–23.

    Article  CAS  Google Scholar 

  6. Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron. 2016;75:188–95.

    Article  CAS  Google Scholar 

  7. Díaz-Fernández A, Rebeca Miranda-Castro R. de-los-Santos-Álvarez N, Rodríguez EF, Lobo-Castañón MJ. Focusing aptamer selection on the glycan structure of prostate-specific antigen: toward more specific detection of prostate cancer. Biosens. Bioelectron. 2019;128:83–90.

    Article  CAS  Google Scholar 

  8. Qian J, Cui HN, Lu XT, Wang CQ, An KQ, Hao N, et al. Bi-color FRET from two nano-donors to a single nano-acceptor: a universal aptasensing platform for simultaneous determination of dual targets. Chem. Eng. J. 2020;401:126017.

    Article  CAS  Google Scholar 

  9. Xiao XL, Peng SH, Wang C, Cheng D, Li N, Dong YL, et al. Metal/metal oxide@carbon composites derived from bimetallic Cu/Ni based MOF and their electrocatalytic performance for glucose sensing. J. Electroanal. Chem. 2019;841:94–100.

    Article  CAS  Google Scholar 

  10. Lv MZ, Zhou W, Tavakoli H, Bautista C, Xia JF, Wang ZH, et al. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens. Bioelectron. 2021;176:112947.

    Article  CAS  Google Scholar 

  11. Ren Q, Mou JS, Guo YM, Wang HQ, Cao XY, Zhang FF, et al. Simple homogeneous electrochemical target-responsive aptasensor based on aptamer bio-gated and porous carbon nanocontainer derived from ZIF-8. Biosens. Bioelectron. 2020;166:112448.

    Article  CAS  Google Scholar 

  12. Tan JS, Peng B, Tang L, Zeng GM, Lu Y, Wang JJ, et al. CuS QDs/Co3O4 polyhedra-driven multiple signal amplifications activated h-BN photoeletrochemical biosensing platform. Anal. Chem. 2020;92:13073–83.

    Article  CAS  Google Scholar 

  13. Shen HW, Deng WQ, He YR, Li XR, Song JL, Liu R, et al. Ultrasensitive aptasensor for isolation and detection of circulating tumor cells based on CeO2@Ir nanorods and DNA walker. Biosens. Bioelectron. 2020;168:112516.

    Article  CAS  Google Scholar 

  14. Zhang C, Ma ZF. PtCu nanoprobe-initiated cascade reaction modulated iodide-responsive sensing interface for improved electrochemical immunosensor of neuron specific enolase. Biosens. Bioelectron. 2019;143:111612.

    Article  CAS  Google Scholar 

  15. Tian L, Zhang Y, Wang LB, Geng QJ, Liu DX, Duan LL, et al. Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensitive kanamycin detection. ACS Appl. Mater. Interfaces. 2020;12:52713–20.

    Article  CAS  Google Scholar 

  16. Zhang YX, Cao XY, Deng RX, Liu QY, Xia JF, Wang ZH. DNA synergistic enzyme-mediated cascade reaction for homogeneous electrochemical bioassay. Biosens. Bioelectron. 2019;142:111510.

    Article  CAS  Google Scholar 

  17. Yan YC, Qiao ZJ, Hai X, Song WL, Bi S. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture. Biosens. Bioelectron. 2021;174:112827.

    Article  CAS  Google Scholar 

  18. Attar F, Shahpar MG, Rasti B, Sharifi M, Saboury AA, Rezayat SM, et al. Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 2019;278:130–44.

    Article  CAS  Google Scholar 

  19. Yi WJ, Cai RL, Xiang DF, Wang YX, Zhang MS, Ma QH, et al. A novel photoelectrochemical strategy based on an integrative photoactive heterojunction nanomaterial and a redox cycling amplification system for ultrasensitive determination of microRNA in cells. Biosens. Bioelectron. 2019;143:111614.

    Article  CAS  Google Scholar 

  20. Nandhakumar P, Ichzan AM, Lee N, Yoon YH, Ma S, Kim S, et al. Carboxyl esterase-like activity of DT-diaphorase and its use for signal amplification. ACS Sens. 2019;4:2966–73.

    Article  CAS  Google Scholar 

  21. Deng HM, Chai YQ, Yuan R, Yuan YL. In situ formation of multifunctional DNA nanospheres for a sensitive and accurate dual-mode biosensor for photoelectrochemical and electrochemical assay. Anal. Chem. 2020;92:8364–70.

    Article  CAS  Google Scholar 

  22. Zhang YX, Xia JF, Zhang FF, Wang ZH, Liu QY. A dual-channel homogeneous aptasensor combining colorimetric with electrochemical strategy for thrombin. Biosens. Bioelectron. 2018;120:15–21.

    Article  CAS  Google Scholar 

  23. Akanda MR, Ju HX. A tyrosinase-responsive nonenzymatic redox cycling for amplified electrochemical immunosensing of protein. Anal. Chem. 2016;88:9856–61.

    Article  CAS  Google Scholar 

  24. Anh TM, Dzyadevych SV, Van MC, Renault NJ, Duc CN, Chovelon JM. Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta. 2004;63:365–70.

    Article  CAS  Google Scholar 

  25. Wang Y, Zhai FG, Hasebe Y, Jia HM, Zhang ZQ. A highly sensitive electrochemical biosensor for phenol derivatives using graphene oxide-modified tyrosinase electrode. Bioelectrochemistry. 2018;122:174–82.

    Article  CAS  Google Scholar 

  26. Wu YQ, Chen YX, Zhang SQ, Zhang LZ, Gong JM. Bifunctional S, N-codoped carbon dots-based novel electrochemiluminescent bioassay for ultrasensitive detection of atrazine using activated mesoporous biocarbon as enzyme nanocarriers. Anal. Chim. Acta. 2019;1073:45–53.

    Article  CAS  Google Scholar 

  27. Kaneti YV, Tang J, Salunkhe RR, Jiang XC, Yu AB, Wu KCW, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017;29:1604898.

    Article  CAS  Google Scholar 

  28. Yuan Y, Xu XZ, Xia JF, Zhang FF, Wang ZH, Liu QY. A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchim. Acta. 2019;186:191.

    Article  CAS  Google Scholar 

  29. Zhang YX, Xu JY, Xia JF, Zhang FF, Wang ZH. MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces. 2018;10:39151–60.

    Article  CAS  Google Scholar 

  30. Jia ZK, Ma YS, Yang LY, Guo CP, Zhou N, Wang MH, et al. NiCo2O4 spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens. Bioelectron. 2019;133:55–63.

    Article  CAS  Google Scholar 

  31. Xu YW. Cheng YX, Jia YJ. Ye BC. Synthesis of MOF-derived Ni@C materials for the electrochemical detection of histamine. Talanta. 2020;219:121360.

    PubMed  CAS  Google Scholar 

  32. Cao XY, Xia JF, Meng X, Xu JY, Liu QY, Wang ZH. Stimuli-responsive DNA-gated nanoscale porous carbon derived from ZIF-8. Adv. Funct. Mater. 2019;1902237.

  33. Robert M, Gibbs BF, Jacobson E, Gagnon C. Characterization of prostate-specific antigen proteolytic activity on its major physiological substrate, the sperm motility inhibitor precursor/semenogelin I. Biochemistry. 1997;36:3811–9.

    Article  CAS  Google Scholar 

  34. Ibau C, Arshad MKM, Gopinath SCB. Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens. Bioelectron. 2017;98:267–84.

    Article  CAS  Google Scholar 

  35. Meng W, Zhang W, Zhang J, Chen X, Zhang Y. An electrochemical immunosensor for prostate specific antigen using nitrogen-doped graphene as a sensing platform. Anal. Methods. 2019;11:2183.

    Article  CAS  Google Scholar 

  36. Traynor SM, Wang GA, Pandey R, Li F, Soleymani L. Dynamic bio-barcode assay enables electrochemical detection of a cancer biomarker in undiluted human plasma: a sample-in answer-out approach. Angew. Chem. Int. Ed. 2020;59:2–8.

    Article  CAS  Google Scholar 

  37. Jolly P, Zhurauski P, Hammond JL, Miodek A, Liébana S, Bertok T, et al. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sens. Actuator. B Chem. 2017;251:637–43.

    Article  CAS  Google Scholar 

  38. Srivastava M, Nirala NR, Srivastava SK, Prakash R. A comparative study of aptasensor vs immunosensor for label-free PSA cancer detection on GQDsAuNRs modified screen–printed electrodes. Sci. Rep-UK. 2018;8:1923.

    Article  CAS  Google Scholar 

  39. Rahi A, Sattarahmady N, Heli H. Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta. 2016;156-157:218–24.

    Article  CAS  Google Scholar 

  40. Wei B, Mao K, Liu N, Zhang M, Yang Z. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens. Bioelectron. 2018;121:41–6.

    Article  CAS  Google Scholar 

  41. Kong WS, Qu FL, Lu LM. A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen. Anal. Bioanal. Chem. 2020;412:841–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors really appreciate the financial support from the Key Research and Development Project of Shandong Province (2019GGX102083), the Taishan Scholar Program of Shandong Province (No. ts201511027), and the Natural Science Foundation of Shandong (ZR2020MB060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Sun or Jianfei Xia.

Ethics declarations

The authors declare no competing interests.

The human serum samples used in this work were obtained from the hospital (The Affiliated Hospital of Qingdao University, Qingdao, China). And the ethics committee of the hospital approved the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Cao, X., Liu, M. et al. Aptamer and bifunctional enzyme co-functionalized MOF-derived porous carbon for low-background electrochemical aptasensing. Anal Bioanal Chem 413, 6303–6312 (2021). https://doi.org/10.1007/s00216-021-03585-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03585-0

Keywords

Navigation