Skip to main content
Log in

A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive photoelectrochemical (PEC) aptasensor was constructed for prostate-specific antigen (PSA) detection using an enhanced photocurrent response strategy. The p-n heterostructure CdS-Cu2O nanorod arrays were prepared on Ti mesh (CdS-Cu2O NAs/TM) by a simple hydrothermal method and successive ionic-layer adsorption reactions. Compared with the original CdS/TM, the synergistic effect of p-n type CdS-Cu2O NAs/TM and the internal electric field realizes the effective separation of photoinduced electron–hole pairs and improves the PEC performance. In order to construct the aptasensor, an amino-modified aptamer was immobilized on CdS-Cu2O NAs/TM to serve as a recognition unit for PSA. After the introduction of PSA, PSA was specifically captured by the aptamer on the PEC aptasensor, which can be oxidized by photogenerated holes to prevent electron–hole recombination and increase photocurrent. Under optimal conditions, the constructed PEC aptasensor has a linear range of 0.1–100 ng·mL−1 and a detection limit as low as 0.026 ng·mL−1. The results of aptasensor detection of human serum indicate that it has broad application prospects in biosensors and photoelectrochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F. Graphene oxide quantum dots@ silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron. 2015;74:909–914.

    CAS  PubMed  Google Scholar 

  2. Chen X, Zhou G, Song P, Wang J, Gao J, Lu J, et al. Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. Anal Chem. 2014;86:7337–7342.

    CAS  PubMed  Google Scholar 

  3. Fernandez-Sanchez C, McNiel C-J, Rawson K, Nilsson O, Leung H-Y, Gnanapragasam V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J Immunol Methods. 2005;307:1–12.

    CAS  PubMed  Google Scholar 

  4. Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem. 2007;26:679–688.

    CAS  Google Scholar 

  5. Lance R-S, Drake R-R, Troyer D-A. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Expert Rev Anticancer Ther. 2011;11:1341–1343.

    CAS  PubMed  Google Scholar 

  6. Mohan K, Donavan K-C, Arter J-A, Penner R-M, Weiss G-A. Sub-nanomolar detection of prostate-specific membrane antigen in synthetic urine by synergistic, dual-ligand phage. J Am Chem Soc. 2013;135:7761–7767.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Souada M, Piron B, Reisberg S, Anquetin G, Noël V, Pham M-C. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron. 2015;68:49–54.

    CAS  PubMed  Google Scholar 

  8. Chen Z, Lei Y, Chen X, Wang Z, Liu J. An aptamer based resonance light scattering assay of prostate specific antigen. Biosens Bioelectron. 2012;36:35–40.

    CAS  PubMed  Google Scholar 

  9. Fenner A. Prostate cancer: novel “inverse sensitivity” enzyme-linked crystal-growth assay to detect ultralow PSA levels. Nat Rev Urol. 2012;9:354.

    PubMed  Google Scholar 

  10. Kim D-J, Lee N-E, Park J-S, Park I-J, Kim J-G, Cho H-J. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron. 2010;25:2477–2482.

    CAS  PubMed  Google Scholar 

  11. Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron. 2011;26:3927–3931.

    CAS  PubMed  Google Scholar 

  12. Wang X, Zhao M, Nolte D-D. Ratliff T-L prostate specific antigen detection in patient sera by fluorescence-free BioCD protein array. Biosens Bioelectron. 2011;26:1871–1875.

    CAS  PubMed  Google Scholar 

  13. Zhao Y, Gong J, Zhang X, Kong R, Qu F. Enhanced biosensing platform constructed using urchin-like ZnO-au@CdS microspheres based on the combination of photoelectrochemical and bioetching strategies. Sensors Actuators B Chem. 2018;255:1753–1761.

    CAS  Google Scholar 

  14. Kong W-S, Tan Q-Q, Guo H-Y, Sun H, Qin X, Qu F-L. Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification. Microchim Acta. 2019;186:73–80.

    Google Scholar 

  15. Zhao W, Xu J, Chen H. Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev. 2015;44:729–741.

    CAS  PubMed  Google Scholar 

  16. Kang Q, Yang L, Chen Y, Luo S, Wen L, Cai Q, et al. Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSexTe1−x/TiO2 nanotube structure-based label-free immunosensor. Anal Chem. 2010;82:9749–9754.

    CAS  PubMed  Google Scholar 

  17. Freeman R, Girsh J, Willner I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl Mater Interfaces. 2013;5:2815–2834.

    CAS  Google Scholar 

  18. Zhao P, Li D, Yao S, Zhang Y, Liu F, Sun P, et al. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells. J Power Sources. 2016;318:49–56.

    CAS  Google Scholar 

  19. Liu Y, Yan K, Zhang J. Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces. 2016;8:28255–28264.

    Google Scholar 

  20. Fang T, Yang X-M, Zhang L-Z, Gong J-M. Ultrasensitive photoelectrochemical determination of chromium (VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid. J Hazard Mater. 2016;312:106–113.

    CAS  PubMed  Google Scholar 

  21. Gong J, Fang T, Peng D, Li A, Zhang L. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI–BiOI composite. Biosens Bioelectron. 2015;73:256–263.

    CAS  PubMed  Google Scholar 

  22. Gao C, Meng Q, Zhao K, Yin H, Wang D, Guo J, et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater. 2016;28:6485–6490.

  23. Zhao W, Xu J, Chen H. Photoelectrochemical DNA biosensors. Chem Rev. 2014;114:7421–7441.

    CAS  PubMed  Google Scholar 

  24. Wen G, Ju H. Enhanced photoelectrochemical proximity assay for highly selective protein detection in biological matrixes. Anal Chem. 2016;88:8339–8345.

    CAS  PubMed  Google Scholar 

  25. Li C, Wang H, Shen J, Tan B. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Anal Chem. 2015;87:4283–4291.

    CAS  PubMed  Google Scholar 

  26. Du H, Kong R, Guo X, Qu F, Li J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale. 2018;10:21617–21624.

    CAS  PubMed  Google Scholar 

  27. Zhang X, Si C, Guo X, Kong R, Qu F. A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. J Mater Chem A. 2017;5:17211–17215.

  28. Qi L, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys. 2011;13:8915–8923.

    CAS  PubMed  Google Scholar 

  29. Izaki M, Shinagawa T, Mizuno K, Ida Y, Inaba M, Tasaka A. Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J Phys D Appl Phys. 2007;40:3326–3329.

    CAS  Google Scholar 

  30. Wang L. Wang W, Chen Y, Yao L, Zhao X, Shi H, Cao M, Liang Y. Heterogeneous p–n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution. ACS Appl Mater Interfaces. 2018;10:11652–11662.

    CAS  Google Scholar 

  31. Yin G, Sun M, Liu Y, Sun Y, Zhou T, Liu B. Performance improvement in three–dimensional heterojunction solar cells by embedding CdS nanorod arrays in CdTe absorbing layers. Sol Energy Mater Sol Cells. 2017;159:418–426.

    CAS  Google Scholar 

  32. Zhang X, Zhu S, Xia L, Si C, Qu F, Qu F. Ni(OH)2–Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem Commun. 2018;54:1201–1204.

    CAS  PubMed  Google Scholar 

  33. Wang R, Chen S, Ng Y-H, Gao Q, Yang S, Zhang S, et al. ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem Eng J. 2019;362:658–666.

    CAS  Google Scholar 

  34. Mao L, Ji K, Yao L, Xue X, Wen W, Zhang X, et al. Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosens Bioelectron. 2019;127:57–63.

    CAS  PubMed  Google Scholar 

  35. Zhang J, Wang Y, Yu C, Shu X, Jiang L, Cui J, et al. Enhanced visible-light photoelectrochemical behaviour of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays. New J Chem. 2014;38:4975–4984.

  36. Sun Q, Peng Y, Chen H, Chang K, Qiu Y, Lai S. Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays. J Hazard Mater. 2016;319:121–129.

  37. Yuan W, Yuan J, Xie J, Li C. Polymer-mediated self-assembly of TiO2@Cu2O core–shell nanowire array for highly efficient photoelectrochemical water oxidation. ACS Appl Mater Interfaces. 2016;8:6082–6092.

    CAS  Google Scholar 

  38. Dong Y, Cao J, Wang B, Ma S, Liu Y. Spatial-resolved photoelectrochemical biosensing array based on a CdS@gC3N4 heterojunction: a universal immunosensing platform for accurate detection. ACS Appl Mater Interfaces. 2018;10:3723–3731.

    CAS  Google Scholar 

  39. Zhao N, He Y, Mao X, Sun Y, Zhang X, Li C, et al. Electrochemical assay of active prostate-specific antigen (PSA) using ferrocene-functionalized peptide probes. Electrochem Commun. 2010;12:471–474.

    CAS  Google Scholar 

  40. Barbosa A, Gehlot P, Sidapra K, Edwards A, Reis N. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron. 2015;70:5–14.

    CAS  PubMed  Google Scholar 

  41. Khan Y, Li A, Chang L, Li L, Guo L. Gold nano disks arrays for localized surface plasmon resonance based detection of PSA cancer marker. Sensors Actuators B Chem. 2018;255:1298–1307.

    CAS  Google Scholar 

  42. Jang H, Kim S, Chang H, Choi J. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron. 2015;63:546–551.

    CAS  PubMed  Google Scholar 

  43. Li H, Huang Y, Zhang B, Yang D, Zhu X, Li G. A new method to assay protease based on amyloid misfolding: application to prostate cancer diagnosis using a panel of proteases biomarkers. Theranostics. 2014;4(7):701–707.

    PubMed  PubMed Central  Google Scholar 

  44. Li C, Ma J, Fan Q, Tao Y, Li G. Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chem Commun. 2016;52:7850–7853.

    CAS  Google Scholar 

  45. Vashist S, Luppa P, Yeo L, Ozcan A, Luong J. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775089, 21671118), Outstanding Youth Foundation of Shandong Province (ZR2017JL010), the Key Research and Development Program of Jining City (2018ZDGH032) and Taishan scholar of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengli Qu or Limin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical committee approval

Human serum sample experiments were conducted in accordance with the guidelines of the Ethics Committee of Qufu Normal University. All studies were approved by the Ethics Committee of Qufu Normal University. We have obtained informed consent for any experiments with human serum samples.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Qu, F. & Lu, L. A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen. Anal Bioanal Chem 412, 841–848 (2020). https://doi.org/10.1007/s00216-019-02283-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02283-2

Keywords

Navigation