Skip to main content
Log in

An integrated strategy for the identification and screening of anti-allergy components from natural products based on calcium fluctuations and cell extraction coupled with HPLC–Q–TOF–MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Allergic diseases are a significant public health problem worldwide. Traditional Chinese medicines (TCMs) with reported anti-allergy effects may be important sources for the development of new anti-allergy drugs. Thus, establishing an analytical method that can simultaneously identify and screen anti-allergic compounds in TCMs is important. The increased concentrations of intracellular calcium ions resulting in mast cell degranulation releasing active mediators play a key role in allergic diseases, which can be used as a potential index to identify anti-allergic herbs and compounds. In this study, we provide a new strategy that was applied to screening natural anti-allergic compounds based on fluorescence calcium ion (Ca2+) fluctuation integrated with cell extract and high-performance liquid chromatographymass spectrometry (HPLCMS). A low-cost, convenient fluorescence detection Ca2+ signaling method was established and successfully applied to identify three herbs. Then, the method was integrated with biospecific cell fishing and HPLCMS to screen potential active components that have the effect of stabilizing the cell membrane of rat basophilic leukemia granulocytes (RBL-2H3). Seven components, namely, albiflorin and paeoniflorin from Radix Paeoniae Alba, ononin and formononetin from Radix Astragali, cimifugin, 4′-O-β-D-glucosyl-5-O-methylvisamminol, and prim-O-glucosylcimifugin from Radix Saposhnikoviae were fished. These seven compounds have the effect of inhibiting cell Ca2+ influx. 4′-O-β-D-Glucosyl-5-O-methylvisamminol, prim-O-glucosylcimifugin, paeoniflorin, ononin, and formononetin significantly inhibit the release of β-hexosaminidase, which is equivalent to the positive drug. In conclusion, the integrated strategy of fluorescence detection calcium ion kinetic method binding with biospecific cell fishing was an effective mode to identify and screen natural anti-allergic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9

Similar content being viewed by others

References

  1. Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Therapeut. 2017;170:37–63.

    Article  CAS  Google Scholar 

  2. Pinho BR, Sousa C, Valentao P, Oliveira JM, Andrade PB. Modulation of basophils’ degranulation and allergy-related enzymes by monomeric and dimeric naphthoquinones. PLoS ONE. 2014;9(2):e90122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Alkotob SS, Cannedy C, Harter K, Movassagh H, Paudel B, Prunicki M, et al. Advances and novel developments in environmental influences on the development of atopic diseases. Allergy. 2020;75(12):3077–86.

    Article  PubMed  Google Scholar 

  4. Church MK, Kolkhir P, Metz M, Maurer M. The role and relevance of mast cells in urticaria. Immunol Rev. 2018;282:232–47.

    Article  PubMed  CAS  Google Scholar 

  5. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519:237–41.

    Article  PubMed  CAS  Google Scholar 

  6. Elieh Ali Komi D, Wohrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immu. 2020;58(3):342–65.

    Article  Google Scholar 

  7. Callahan BN, Kammala AK, Syed M, Yang C, Occhiuto CJ, Nellutla R, et al. Osthole, a natural plant derivative inhibits MRGPRX2 induced mast cell responses. Front Immunol. 2020;11:703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Brit J Pharmacol. 2013;170(1):23–37.

    Article  CAS  Google Scholar 

  9. Yang YH, Lu JYL, Wu XS, Summer S, Whoriskey J, Saris C, et al. G-Protein-Coupled Receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology. 2010;86(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol. 2016;778:158–68.

    Article  PubMed  CAS  Google Scholar 

  11. Schwarzer G, Bassler D, Mitra A, Ducharme FM, Forster J. Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. Cochrane DB Syst Rev. 2004;1:CD001384–4.

  12. Wang YK, Xiao XR, Zhou ZM, Xiao Y, Zhu WF, Liu HN, et al. A strategy combining solid-phase extraction, multiple mass defect filtering and molecular networking for rapid structural classification and annotation of natural products: characterization of chemical diversity in Citrus aurantium as a case study. Anal Bioanal Chem. 2021;413(11):2879–91.

    Article  PubMed  CAS  Google Scholar 

  13. Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol. 2009;10(1):21–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wajdner HE, Farrington J, Barnard C, Peachell PT, Schnackenberg CG, Marino JP, et al. Orai and TRPC channel characterization in FcepsilonRI-mediated calcium signaling and mediator secretion in human mast cells. Physiol Rep. 2017;5(5):e13166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Occhiuto CJ, Kammala AK, Yang C, Nellutla R, Garcia M, Gomez G, et al. Store-operated calcium entry via STIM1 contributes to MRGPRX2 induced mast cell functions. Front Immunol. 2019;10:3143.

    Article  PubMed  CAS  Google Scholar 

  16. Yang G, Ma H, Wu Y, Zhou B, Zhang C, Chai C, et al. Activation of TRPC6 channels contributes to (+)-conocarpan-induced apoptotic cell death in HK-2 cells. Food Chem Toxicol. 2019;129:281–90.

    Article  PubMed  CAS  Google Scholar 

  17. Cohen R, Torres A, Ma HT, Holowka D, Baird B. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. J Immunol. 2009;183(10):6478–88.

    Article  PubMed  CAS  Google Scholar 

  18. Sahid MNA, Kiyoi T. Mast cell activation markers for in vitro study. J Immunoass Immunoch. 2020;41(4):778–816.

    Article  CAS  Google Scholar 

  19. Zou X, Wu Y, Chen J, Zhao F, Zhang F, Yu B, et al. Activation of sodium channel by a novel alpha-scorpion toxin, BmK NT2, stimulates ERK1/2 and CERB phosphorylation through a Ca(2+) dependent pathway in neocortical neurons. Int J Biol Macromol. 2017;104:70–7.

    Article  PubMed  CAS  Google Scholar 

  20. Tian Y, Gong P, Wu Y, Chang S, Xu J, Yu B, et al. Screening and identification of potential active components in Ophiopogonis Radix against atherosclerosis by biospecific cell extraction. J Chromatogr B. 2019;1133:121817.

    Article  CAS  Google Scholar 

  21. Ren W, Han L, Luo M, Bian BL, Guan M, Yang H, et al. Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS. Anal Bioanal Chem. 2018;410:4419–35.

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Zhang F, Cao Z, Xiao Y, Li S, Yu B, et al. Ginsenoside F2 induces the release of mediators associated with Anaphylactoid reactions. Fitoterapia. 2017;121:223–8.

    Article  PubMed  CAS  Google Scholar 

  23. Hiemori-Kondo M, Morikawa E, Fujikura M, Nagayasu A, Maekawa Y. Inhibitory effects of cyanidin-3-O-glucoside in black soybean hull extract on RBL-2H3 cells degranulation and passive cutaneous anaphylaxis reaction in mice. Int Immunopharmacol. 2021;94:107394.

    Article  PubMed  CAS  Google Scholar 

  24. Huang L, Li T, Zhou H, Qiu P, Wu J, Liu L. Sinomenine potentiates degranulation of RBL-2H3 basophils via up-regulation of phospholipase A2 phosphorylation by Annexin A1 cleavage and ERK phosphorylation without influencing on calcium mobilization. Int Immunopharmacol. 2015;28(2):945–51.

    Article  PubMed  CAS  Google Scholar 

  25. Xu Y, Liu C, Dou D, Wang Q. Evaluation of anaphylactoid constituents in vitro and in vivo. Int Immunopharmacol. 2017;43:79–84.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen R, Holowka DA, Baird BA. Real-time imaging of Ca(2+) mobilization and degranulation in mast cells. Methods Mol Biol. 2015;1220:347–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fitzpatrick CJ, Morrow JD. Thalamic mast cell activity is associated with sign-tracking behavior in rats. Brain Behav Immun. 2017;65:222–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mazuerk N. H schindler, TH Schurholz, I Pecht. The cromolyn binding protein constitutes the Ca2+ channel of basophils opening upon immunological stimulus. Proc Natl Acad Sci USA. 1984;81:6841–5.

    Article  Google Scholar 

  29. Simons FE, Luciuk GH, Becker AB, Gillespie CA. Ketotifen: a new drug for prophylaxis of asthma in children. Ann Allergy. 1982;48(3):145–50.

    PubMed  CAS  Google Scholar 

  30. Baba A, Tachi M, Ejima Y, Endo Y, Toyama H, Matsubara M, et al. Anti-allergic drugs tranilast and ketotifen dose-dependently exert mast cell-stabilizing properties. Cell Physiol Biochem. 2016;38(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen CH, Brenner S, Huttary N, Li Y, Atanasov AG, Dirsch VM, et al. 12(S)-HETE increases intracellular Ca(2+) in lymph-endothelial cells disrupting their barrier function in vitro; stabilization by clinical drugs impairing calcium supply. Cancer Lett. 2016;380(1):174–83.

    Article  PubMed  CAS  Google Scholar 

  32. Avunduk AM, Avunduk MC, Kapicioglu Z, Akyol N, Tavli L. Mechanisms and comparison of anti-allergic efficacy of topical lodoxamide and cromolyn sodium treatment in vernal keratoconjunctivitis. Ophthalmology. 2000;107(7):1333–7.

    Article  PubMed  CAS  Google Scholar 

  33. Avni Murat Avunduk MCA, Zerrin Kapıcıog˘lu, Nurettin Akyol, Lema Tavlı. Mechanisms and comparison of anti-allergic efficacy of topical lodoxamide and cromolyn sodium treatment in vernal keratoconjunctivitis. Am Acad Ophthalmol. 1999;107 (7):1333–1337.

  34. Jia Z, Wang X, Wang X, Wei P, Li L, Wu P, et al. Calycosin alleviates allergic contact dermatitis by repairing epithelial tight junctions via down-regulating HIF-1alpha. J Cell Mol Med. 2018;22:4507–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Qu ZH, Yang ZC, Chen L, Lv ZD, Yi MJ, Ran N. Inhibition airway remodeling and transforming growth factor-beta1/Smad signaling pathway by astragalus extract in asthmatic mice. Int J Mol Med. 2012;29:564–8.

    Article  PubMed  CAS  Google Scholar 

  36. Kim BH, Oh I, Kim JH, Jeon JE, Jeon B, Shin J, et al. Anti-inflammatory activity of compounds isolated from Astragalus sinicus L. in cytokine-induced keratinocytes and skin. Exp Mol Med. 2014;46:e87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jia Q, Sun W, Zhang L, Fu J, Lv Y, Lin Y, et al. Screening the anti-allergic components in Saposhnikoviae Radix using high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography online coupled with liquid chromatography and mass spectrometry. J Sep Sci. 2019;42:2351–9.

    Article  PubMed  CAS  Google Scholar 

  38. He DY, Dai SM. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine. Front Pharmacol. 2011;2:1–5.

    Article  Google Scholar 

  39. Fu H, Cheng H, Cao G, Zhang X, Tu J, Sun M, et al. The inhibition of mast cell activation of Radix Paeoniae alba extraction identified by TCRP based and conventional cell function assay systems. PLoS ONE. 2016;11(5):e0155930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Guo Y, Fu R, Qian Y, Zhou Z, Liu H, Qi J, et al. Comprehensive screening and identification of natural inducible nitric oxide synthase inhibitors from Radix Ophiopogonis by off-line multi-hyphenated analyses. J Chromatogr A. 2019;1592:55–63.

    Article  PubMed  CAS  Google Scholar 

  41. Dong BJ, Peng CS, Ma P, Li XB, et al. An integrated strategy of MS-network-based offline 2DLC-QTOF-MS/MS coupled with UHPLC-QTRAP -MS/MS for the characterization and quantification of the non-polysaccharides in Sijunzi decoction. Anal Bioanal Chem. 2021;413:3511–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Liu J, Chen L, Fan CR, Li H, Huang MQ, Xiang Q, et al. Qualitative and quantitative analysis of major constituents of Paeoniae Radix Alba and Paeoniae Radix Rubra by HPLC-DAD-Q-TOF-MS/MS. China J Chin Mater Med. 2015;40(9):1762–70.

    CAS  Google Scholar 

  43. Xu H, Cai L, Zhang L, Wang G, Xie R, Jiang Y, et al. Paeoniflorin ameliorates collagen-induced arthritis via suppressing nuclear factor-κB signalling pathway in osteoclast differentiation. Immunology. 2018;154(4):593–603.

    Article  PubMed Central  CAS  Google Scholar 

  44. Wang J, Zhang Y, Wang J, Liu R, Zhang G, Dong K, et al. Paeoniflorin inhibits MRGPRX2-mediated pseudo-allergic reaction via calcium signaling pathway. Phytother Res. 2020;34:401–8.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Xu XJ, Xu W, Huang J, Zhu DY, Qiu XH. Rapid characterization and identification of flavonoids in Radix Astragali by ultra-high-pressure liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry. J Chromatogr Sci. 2015;53(6):945–52.

    Article  PubMed  CAS  Google Scholar 

  46. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217(25):3929–37.

    Article  PubMed  CAS  Google Scholar 

  47. Li L, Wang Y, Wang X, Tao Y, Bao K, Hua Y, et al. Formononetin attenuated allergic diseases through inhibition of epithelial-derived cytokines by regulating E-cadherin. Clin Immunol. 2018;195:67–76.

    Article  PubMed  CAS  Google Scholar 

  48. Chen LX, Chen XY, Su L, Jiang YY, Liu B. Rapid characterisation and identification of compounds in Saposhnikoviae Radix by high-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry. Nat Prod Res. 2018;32(8):898–901.

    Article  PubMed  CAS  Google Scholar 

  49. Tsvilovskyy V, Solis-Lopez A, Almering J, Richter C, Birnbaumer L, et al. Analysis of Mrgprb2 receptor-evoked Ca2+ signaling in bone marrow derived (BMMC) and peritoneal (PMC) mast cells of TRPC-deficient mice. Front Immunol. 2020;11:564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the inspiration from Doctor Fan Zhang and Doctor Lu Wang.

Funding

This research was financially supported by the National Natural Science Foundation of China (81973471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Qi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Li, X., Zhang, J. et al. An integrated strategy for the identification and screening of anti-allergy components from natural products based on calcium fluctuations and cell extraction coupled with HPLC–Q–TOF–MS. Anal Bioanal Chem 413, 6253–6266 (2021). https://doi.org/10.1007/s00216-021-03580-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03580-5

Keywords

Navigation