Skip to main content

Advertisement

Log in

MrgX2-SNAP-tag/cell membrane chromatography model coupled with liquid chromatography-mass spectrometry for anti-pseudo-allergic compound screening in Arnebiae Radix

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pseudo-allergic reactions (PARs) are IgE-independent hypersensitivity reactions. Mas-related G protein-coupled receptor-X2 (MrgX2) was proved the key receptor of PAR. The anti-pseudo-allergic compound discovery based on MrgX2 was of great value. Cell membrane chromatography (CMC) based on MrgX2 provides a convenient and effective tool in anti-pseudo-allergic compound screening and discovery, and further improvements of this method are still needed. In this work, SNAP-tag was introduced at C-terminal of Mas-related G protein-coupled receptor (MrgX2-SNAP-tag), and an MrgX2-SNAP-tag/CMC model was then conducted using CMC technique. Comparative experiments showed that the new model not only satisfied the good selectivity and specificity of screening but also exhibited more stable and longer life span than traditional MrgX2/CMC model. By coupling with HPLC–MS, two compounds were screened out from Arnebiae Radix and identified as shikonin and acetylshikonin. Nonlinear chromatography was performed to study the interactions between two screened compounds and MrgX2, and binding constant (KA) of shikonin and acetylshikonin with MrgX2 were 2075.67 ± 0.34 M−1 and 32201.36 ± 0.35 M−1, respectively. Furthermore, β-hexosaminidase and histamine release assay in vitro demonstrated that shikonin (1–5 μM) and acetylshikonin (2.5–10 μM) could both antagonize C48/80-induced allergic reaction. In conclusion, the MrgX2-SNAP-tag/CMC could be a reliable model for screening pseudo-allergy-related components from complex systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21. https://doi.org/10.1016/j.tox.2005.07.023.

    Article  CAS  PubMed  Google Scholar 

  2. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–41. https://doi.org/10.1038/nature14022.

    Article  CAS  PubMed  Google Scholar 

  3. Wolf K, Kühn H, Boehm F, Gebhardt L, Glaudo M, Agelopoulos K, Ständer S, Ectors P, Zahn D, Riedel YK, Thimm D, Müller CE, Kretschmann S, Kremer AN, Chien D, Limjunyawong N, Peng Q, Dong X, Kolkhir P, Scheffel J, Søgaard ML, Weigmann B, Neurath MF, Hawro T, Metz M, Fischer MJM, Kremer AE. A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice. J Allergy Clin Immunol. 2021;148(2):506-522.e8. https://doi.org/10.1016/j.jaci.2020.12.655.

    Article  CAS  PubMed  Google Scholar 

  4. Li Q, Zhang L, Gu L, Zhang B, Lu J, Zhang X. Pseudo-allergic reaction caused by Qingkailing injection partially via the PI3K-Rac1 signaling pathway in RBL-2H3 cells. Toxicol Res (Camb). 2019;8(3):353–60. https://doi.org/10.1039/c8tx00306h.

    Article  CAS  Google Scholar 

  5. Sun W, Wang S, Liang P, Zhou H, Zhang L, Jia Q, Fu J, Lv Y, Han S. Pseudo-allergic compounds screened from Shengmai injection by using high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography online coupled with liquid chromatography and mass spectrometry. J Sep Sci. 2021;44(7):1421–9. https://doi.org/10.1002/jssc.202001163.

    Article  CAS  PubMed  Google Scholar 

  6. Han J, Zhao Y, Zhang Y, Li C, Yi Y, Pan C, Tian J, Yang Y, Cui H, Wang L, Liu S, Liu J, Deng N, Liang A. RhoA/ROCK signaling pathway mediates Shuanghuanglian injection-induced pseudo-allergic reactions. Front Pharmacol. 2018;9:87. https://doi.org/10.3389/fphar.2018.00087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lv Y, Sun Y, Fu J, Kong L, Han S. Screening anti-allergic components of Astragali Radix using LAD2 cell membrane chromatography coupled online with UHPLC-ESI-MS/MS method. Biomed Chromatogr. 2017;31(2):e3806. https://doi.org/10.1002/bmc.3806.

    Article  CAS  Google Scholar 

  8. Ma W, Wang C, Liu R, Wang N, Lv Y, Dai B, He L. Advances in cell membrane chromatography. J Chromatogr A. 2021;1639:461916. https://doi.org/10.1016/j.chroma.2021.461916.

    Article  CAS  PubMed  Google Scholar 

  9. He X, Sui Y, Wang S. Application of a stepwise frontal analysis method in cell membrane chromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2020;1161:122436. https://doi.org/10.1016/j.jchromb.2020.122436.

    Article  CAS  Google Scholar 

  10. Lv Y, Fu J, Shi X, Yang Z, Han S. Screening allergic components of Yejuhua injection using LAD2 cell membrane chromatography model online with high performance liquid chromatography-ion trap-time of flight-mass spectrum system. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1055–1056:119–24. https://doi.org/10.1016/j.jchromb.2017.04.045.

    Article  CAS  Google Scholar 

  11. Yang L, Zeng Y, Wang J, Zhang Y, Hou Y, Qin Q, Ma W, Wang N. Discovery and analysis the anti-pseudo-allergic components from Perilla frutescens leaves by overexpressed MRGPRX2 cell membrane chromatography coupled with HPLC-ESI-IT-TOF system. J Pharm Pharmacol. 2020;72(6):852–62. https://doi.org/10.1111/jphp.13246.

    Article  CAS  PubMed  Google Scholar 

  12. Engin S, Fichtner D, Wedlich D, Fruk L. SNAP-tag as a tool for surface immobilization. Curr Pharm Des. 2013;19(30):5443–8. https://doi.org/10.2174/1381612811319300015.

    Article  CAS  PubMed  Google Scholar 

  13. Kaith BS, Kaith NS, Chauhan NS. Anti-inflammatory effect of Arnebia euchroma root extracts in rats. J Ethnopharmacol. 1996;55(1):77–80. https://doi.org/10.1016/s0378-8741(96)01477-8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhan ZL, Hu J, Liu T, Kang LP, Nan TG, Guo LP. Advances in studies on chemical compositions and pharmacological activities of Arnebiae Radix. Zhongguo Zhong Yao Za Zhi. 2015;40(21):4127–35.

    CAS  PubMed  Google Scholar 

  15. Kumar A, Shashni S, Kumar P, Pant D, Singh A, Verma RK. Phytochemical constituents, distributions and traditional usages of Arnebia euchroma: a review. J Ethnopharmacol. 2021;271:113896. https://doi.org/10.1016/j.jep.2021.113896.

    Article  CAS  PubMed  Google Scholar 

  16. Liao M, Zhang S. Chemical constituents from the roots of Arnebia euchroma. J Chin Mater Med. 2020;43:2101–706. https://doi.org/10.13863/j.issn1001-4454.2020.11.018.

    Article  Google Scholar 

  17. Wang Y, Zhu Y, Xiao L, Ge L, Wu X, Wu W, Wan H, Zhang K, Li J, Zhou B, Tian J, Zeng X. Meroterpenoids isolated from Arnebia euchroma (Royle) Johnst. and their cytotoxic activity in human hepatocellular carcinoma cells. Fitoterapia. 2018;131:236–44. https://doi.org/10.1016/j.fitote.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  18. Yang C, Liu P, Wang S, Zhao G, Zhang T, Guo S, Jiang K, Wu H, Deng G. Shikonin exerts anti-inflammatory effects in LPS-induced mastitis by inhibiting NF-κB signaling pathway. Biochem Biophys Res Commun. 2018;505(1):1–6. https://doi.org/10.1016/j.bbrc.2018.08.198.

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Zhang L, Gui J. Clinical observation of Zixiandan decoction in treating allergic purpura. World Latest Med Inform. 2019;19:199–200. https://doi.org/10.19613/j.cnki.1671-3141.2019.96.111.

    Article  Google Scholar 

  20. Liu Y, Luo Y. Application of compound lithospermum oil in skin care of drug eruption. J Clin Med. 2017;4(15344):15366. https://doi.org/10.16281/j.cnki.jocml.2017.78.083.

    Article  Google Scholar 

  21. Fu J, Jia Q, Liang P, Wang S, Zhou H, Zhang L, Gao C, Wang H, Lv Y, Han S. Targeting and covalently immobilizing the EGFR through SNAP-tag technology for screening drug leads. Anal Chem. 2021;93(34):11719–28. https://doi.org/10.1021/acs.analchem.1c01664.

    Article  CAS  PubMed  Google Scholar 

  22. Jia Q, Sun W, Zhang L, Fu J, Lv Y, Lin Y, Han S. Screening the anti-allergic components in Saposhnikoviae Radix using high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography online coupled with liquid chromatography and mass spectrometry. J Sep Sci. 2019;42(14):2351–9. https://doi.org/10.1002/jssc.201900114.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas HC. Heterogeneous ion exchange in a flowing system. J Am Chem Soc. 1944;66:1664–6. https://doi.org/10.1021/ja01238a017.

    Article  CAS  Google Scholar 

  24. Wade JL, Bergold AF, Carr PW. Theoretical description of nonlinear chromatography, with applications to physicochemical measurements in affinity chromatography and implications for preparative-scale separations. Anal Chem. 1987;59:1286–95. https://doi.org/10.1021/ac00136a008.

    Article  CAS  Google Scholar 

  25. Han S, Lv Y, Kong L, Che D, Liu R, Fu J, Cao J, Wang J, Wang C, He H, Zhang T, Dong X, He L. Use of the relative release index for histamine in LAD2 cells to evaluate the potential anaphylactoid effects of drugs. Sci Rep. 2017;7:13714. https://doi.org/10.1038/s41598-017-14224-z.7,7,e13714.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liao M, Li A, Chen C, Ouyang H, Zhang Y, Xu Y, Feng Y, Jiang H. Systematic identification of shikonins and shikonofurans in medicinal Zicao species using ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry combined with a data mining strategy. J Chromatogr A. 2015;1425:158–72. https://doi.org/10.1016/j.chroma.

    Article  CAS  PubMed  Google Scholar 

  27. Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, Roth BL. Structure, function and pharmacology of human itch GPCRs. Nature. 2021;600(7887):170–5. https://doi.org/10.1038/s41586-021-04126-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mi YN, Ping NN, Cao YX. Ligands and signaling of Mas-related G protein-coupled receptor-X2 in mast cell activation. Rev Physiol Biochem Pharmacol. 2021;179:139–88. https://doi.org/10.1007/112_2020_53.

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Zhang Y, Li C, Ding Y, Hu S, An H. Inhibitory function of shikonin on MRGPRX2-mediated pseudo-allergic reactions induced by the secretagogue. Phytomedicine. 2020;68:153149. https://doi.org/10.1016/j.phymed.2019.153149.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Numbers: 82104118, 81930096, and 81973278).

Author information

Authors and Affiliations

Authors

Contributions

QJ: conceptualization, methodology, writingoriginal draft. JF: methodology, validation. CG and HW: data curation, investigation. SW and PL: data curation. SH: writing—reviewing. YL and LH: writing—reviewing and editing.

Corresponding authors

Correspondence to Yanni Lv or Langchong He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 255 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Fu, J., Gao, C. et al. MrgX2-SNAP-tag/cell membrane chromatography model coupled with liquid chromatography-mass spectrometry for anti-pseudo-allergic compound screening in Arnebiae Radix. Anal Bioanal Chem 414, 5741–5753 (2022). https://doi.org/10.1007/s00216-022-04167-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04167-4

Keywords

Navigation