Skip to main content
Log in

Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Traditional Chinese medicines (TCMs) are undoubtedly treasured natural resources for discovering effective medicines in treating and preventing various diseases. However, it is still extremely difficult for screening the bioactive compounds due to the tremendous constituents in TCMs. In this work, the chemical composition of toad venom was comprehensively analyzed using ultra-high performance liquid chromatography (UPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometry and 93 compounds were detected. Among them, 17 constituents were confirmed by standard substances and 8 constituents were detected in toad venom for the first time. Further, a compound database of toad venom containing the fullest compounds was further constructed using UPLC coupled with high-sensitivity Qtrap MS. Then a target cell-based approach for screening potential bioactive compounds from toad venom was developed by analyzing the target cell extracts. The reliability of this method was validated by negative controls and positive controls. In total, 17 components in toad venom were discovered to interact with the target cancer cells. Further, in vitro pharmacological trials were performed to confirm the anti-cancer activity of four of them. The results showed that the six bufogenins and seven bufotoxins detected in our research represented a promising resource to explore bufogenins/bufotoxins-based anticancer agents with low cardiotoxic effect. The target cell-based screening method coupled with the compound database of toad venom constructed by UPLC-Qtrap-MS with high sensitivity provide us a new strategy to rapidly screen and identify the potential bioactive constituents with low content in natural products, which was beneficial for drug discovery from other TCMs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hsiao WL, Liu L. The role of traditional Chinese herbal medicines in cancer therapy-from TCM theory to mechanistic insights. Planta Med. 2010;76(11):1118–31.

    Article  CAS  PubMed  Google Scholar 

  2. Wang CY, Bai XY, Wang CH. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. Am J Chin Med. 2014;42(3):543–59.

    Article  CAS  PubMed  Google Scholar 

  3. Konkimalla VB, Efferth T. Anti-cancer natural product library from traditional Chinese medicine. Comb Chem High Throughput Screen. 2008;11(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  4. Otvos RA, van Nierop P, Niessen WM, Kini RM, Somsen GW, Smit AB, et al. Development of an online cell-based bioactivity screening method by coupling liquid chromatography to flow cytometry with parallel mass spectrometry. Anal Chem. 2016;88(9):4825–32.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Zhang R, Gu L, Zhang Y, Zhao X, Bi K, et al. Cell-based screening identifies the active ingredients from traditional Chinese medicine formula Shixiao san as the inhibitors of atherosclerotic endothelial dysfunction. PLoS One. 2015;10(2):e0116601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan J, Chen Y, Liang J, Wang CZ, Liu X, Yan Z, et al. Component analysis and target cell-based neuroactivity screening of Panax ginseng by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Chromatogr B. 2016;1038:1–11.

    Article  CAS  Google Scholar 

  7. Sun M, Huang L, Zhu J, Bu W, Sun J, Fang Z. Screening nephroprotective compounds from cortex Moutan by mesangial cell extraction and UPLC. Arch Pharm Res. 2015;38(6):1044–53.

    Article  CAS  PubMed  Google Scholar 

  8. Mou ZL, Qi XN, Liu RL, Zhang J, Zhang ZQ. Three-dimensional cell bioreactor coupled with high performance liquid chromatography-mass spectrometry for the affinity screening of bioactive components from herb medicine. J Chromatogr A. 2012;1243:33–8.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wang P, Xiao W, Zhao L, Wang Z, Yu L. Screening and analyzing the potential bioactive components from reduning injection, using macrophage cell extraction and ultra-high performance liquid chromatography coupled with mass spectrometry. Am J Chin Med. 2013;41(1):221–9.

    Article  CAS  PubMed  Google Scholar 

  10. Li SL, Li P, Sheng LH, Li RY, Qi LW, Zhang LY. Live cell extraction and HPLC-MS analysis for predicting bioactive components of traditional Chinese medicines. J Pharm Biomed Anal. 2006;41(2):576–81.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng Z, Huang M, Chen G, Yang G, Zhou X, Chen C, et al. Cell-based assays in combination with ultra-high performance liquid chromatography-quadrupole time of flight tandem mass spectrometry for screening bioactive capilliposide C metabolites generated by rat intestinal microflora. J Pharm Biomed Anal. 2016;119:130–8.

    Article  CAS  PubMed  Google Scholar 

  12. Qiu JY, Chen X, Zheng XX, Jiang XL, Yang DZ, Yu YY, et al. Target cell extraction coupled with LC-MS/MS analysis for screening potential bioactive components in Ginkgo biloba extract with preventive effect against diabetic nephropathy. Biomed Chromatogr. 2015;29(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  13. Liao SG, Li YT, Zhang LJ, Wang Z, Chen TX, Huang Y, et al. UPLC-PDA-ESI-MS/MS analysis of compounds extracted by cardiac h9c2 cell from Polygonum orientale. Phytochem Anal. 2013;24(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  14. Ren W, Xin SK, Han LY, Zuo R, Li Y, Gong MX, et al. Comparative metabolism of four limonoids in human liver microsomes using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(21):2045–56.

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Yao W, Wang Y, Shi L, Su R, Wan D, et al. High-throughput screening of triplex DNA binders from complicated samples by 96-well pate format in conjunction with peak area-fading UPLC-Orbitrap MS. Analyst. 2017. https://doi.org/10.1039/c6an01974a.

  16. Guan M, Dai D, Li L, Wei J, Yang H, Li S, et al. Comprehensive qualification and quantification of triacylglycerols with specific fatty acid chain composition in horse adipose tissue, human plasma and liver tissue. Talanta. 2017;172:206–14.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Wu X, Tan M, Gong J, Tan W, Bian B, et al. Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy. J Ethnopharmacol. 2012;140(1):33–45.

    Article  PubMed  Google Scholar 

  18. Man S, Gao W, Wei C, Liu C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res. 2012;26(10):1449–65.

    CAS  PubMed  Google Scholar 

  19. Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. Drug Des Devel Ther. 2015;9:2735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee S, Lee Y, Choi YJ, Han KS, Chung HW. Cyto−/genotoxic effects of the ethanol extract of Chan Su, a traditional Chinese medicine, in human cancer cell lines. J Ethnopharmacol. 2014;152(2):372–6.

    Article  PubMed  Google Scholar 

  21. Li C, Hashimi SM, Cao S, Qi J, Good D, Duan W, et al. Chansu inhibits the expression of cortactin in colon cancer cell lines in vitro and in vivo. BMC Complement Altern Med. 2015;15:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li C, Hashimi SM, Cao S, Mellick AS, Duan W, Good D, et al. The mechanisms of chansu in inducing efficient apoptosis in colon cancer cells. Evid Based Complement Alternat Med. 2013;2013:849054.

    PubMed  PubMed Central  Google Scholar 

  23. Meng Z, Yang P, Shen Y, Bei W, Zhang Y, Ge Y, et al. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer. 2009;115(22):5309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu T, Sun R, Wang Z, Yang W, Shen S, Zhao Z. A meta-analysis of Cinobufacini combined with transcatheterarterial chemoembolization in the treatment of advanced hepatocellular carcinoma. J Cancer Res Ther. 2014;10(Suppl 1):60–4.

    PubMed  Google Scholar 

  25. Dong J, Zhai X, Chen Z, Liu Q, Ye H, Chen W, et al. Treatment of huge hepatocellular carcinoma using cinobufacini injection in transarterial chemoembolization: a retrospective study. Evid Based Complement Alternat Med. 2016;2016:2754542.

    PubMed  PubMed Central  Google Scholar 

  26. Chen Z, Chen HY, Lang QB, Li B, Zhai XF, Guo YY, et al. Preventive effects of jiedu granules combined with cinobufacini injection versus transcatheter arterial chemoembolization in post-surgical patients with hepatocellular carcinoma: a case-control trial. Chin J Integr Med. 2012;18(5):339–44.

    Article  PubMed  Google Scholar 

  27. Li X, Liu Y, Shen A, Wang C, Yan J, Zhao W, et al. Efficient purification of active bufadienolides by a class separation method based on hydrophilic solid-phase extraction and reversed-phase high performance liquid chromatography. J Pharm Biomed Anal. 2014;97:54–64.

    Article  CAS  PubMed  Google Scholar 

  28. Li XL, Guo ZM, Wang CR, Shen AJ, Liu YF, Zhang XL, et al. Purification of bufadienolides from the skin of Bufo bufo gargarizans Cantor with positively charged C18 column. J Pharm Biomed Anal. 2014;92:105–13.

    Article  CAS  PubMed  Google Scholar 

  29. Wang YM, Li ZY, Wang JJ, Wu XY, Gao HM, Wang ZM. Bufadienolides and polyhydroxycholestane derivatives from Bufo bufo gargarizans. J Asian Nat Prod Res. 2015;17(4):364–76.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez C, Rollins-Smith L, Ibanez R, Durant-Archibold AA, Gutierrez M. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J Ethnopharmacol. 2017;198:235–54.

    Article  CAS  PubMed  Google Scholar 

  31. Sousa LQ, Machado KD, Oliveira SF, Araujo LD, Moncao-Filho ED, Melo-Cavalcante AA, et al. Bufadienolides from amphibians: a promising source of anticancer prototypes for radical innovation, apoptosis triggering and Na+/K+-ATPase inhibition. Toxicon. 2017;127:63–76.

    Article  CAS  PubMed  Google Scholar 

  32. Meng Q, Yau LF, Lu JG, Wu ZZ, Zhang BX, Wang JR, et al. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin. J Ethnopharmacol. 2016;187:74–82.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Gong Y, Ma H, Wang H, Qian D, Wen H, et al. Effect of drying methods on the free and conjugated bufadienolide content in toad venom determined by ultra-performance liquid chromatography-triple quadrupole mass spectrometry coupled with a pattern recognition approach. J Pharm Biomed Anal. 2015;114:482–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hu YM, Yu ZL, Yang ZJ, Zhu GY, Fong WF. Comprehensive chemical analysis of Venenum Bufonis by using liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2011;56(2):210–20.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang HY, Hu CX, Liu CP, Li HF, Wang JS, Yuan KL, et al. Screening and analysis of bioactive compounds in traditional Chinese medicines using cell extract and gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2007;43(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hong M, Wang XZ, Wang L, Hua YQ, Wen HM, Duan JA. Screening of immunomodulatory components in Yu-ping-feng-san using splenocyte binding and HPLC. J Pharm Biomed Anal. 2011;54(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Deng Y, Xue Y, Liang J. Screening of bioactive compounds in Radix Salviae Miltiorrhizae with liposomes and cell membranes using HPLC. J Pharm Biomed Anal. 2012;70:194–201.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang P, Cui Z, Liu Y, Wang D, Liu N, Yoshikawa M. Quality evaluation of traditional Chinese drug toad venom from different origins through a simultaneous determination of bufogenins and indole alkaloids by HPLC. Chem Pharm Bull (Tokyo). 2005;53(12):1582–6.

    Article  CAS  Google Scholar 

  39. Schmeda-Hirschmann G, Quispe C, Arana GV, Theoduloz C, Urra FA, Cardenas C. Antiproliferative activity and chemical composition of the venom from the Amazonian toad Rhinella marina (Anura: Bufonidae). Toxicon. 2016;121:119–29.

    Article  CAS  PubMed  Google Scholar 

  40. Zulfiker AH, Sohrabi M, Qi J, Matthews B, Wei MQ, Grice ID. Multi-constituent identification in Australian cane toad skin extracts using high-performance liquid chromatography high-resolution tandem mass spectrometry. J Pharm Biomed Anal. 2016;129:260–72.

    Article  CAS  PubMed  Google Scholar 

  41. Schmeda-Hirschmann G, Gomez CV, Rojas de Arias A, Burgos-Edwards A, Alfonso J, Rolon M, et al. The Paraguayan Rhinella toad venom: implications in the traditional medicine and proliferation of breast cancer cells. J Ethnopharmacol. 2017;199:106–18.

    Article  CAS  PubMed  Google Scholar 

  42. Coates D. The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol. 2003;35(6):769–73.

    Article  CAS  PubMed  Google Scholar 

  43. Hou X, Zhou M, Jiang Q, Wang S, He L. A vascular smooth muscle/cell membrane chromatography-offline-gas chromatography/mass spectrometry method for recognition, separation and identification of active components from traditional Chinese medicines. J Chromatogr A. 2009;1216(42):7081–7.

    Article  CAS  PubMed  Google Scholar 

  44. Dal Lago L, D'Hondt V, Awada A. Selected combination therapy with sorafenib: a review of clinical data and perspectives in advanced solid tumors. Oncologist. 2008;13(8):845–58.

    Article  CAS  PubMed  Google Scholar 

  45. Sarrouilhe D, Clarhaut J, Defamie N, Mesnil M. Serotonin and cancer: what is the link? Curr Mol Med. 2015;15(1):62–77.

    Article  CAS  PubMed  Google Scholar 

  46. Gao H, Popescu R, Kopp B, Wang Z. Bufadienolides and their antitumor activity. Nat Prod Rep. 2011;28(5):953–69.

    Article  CAS  PubMed  Google Scholar 

  47. Han L, Wang H, Si N, Ren W, Gao B, Li Y, et al. Metabolites profiling of 10 bufadienolides in human liver microsomes and their cytotoxicity variation in HepG2 cell. Anal Bioanal Chem. 2016;408(10):2485–95.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Q, Wang J, Ma HY, Ding AW, Shang EX, Zhan Z, et al. Cell extraction-UPLC-QTOF determination of the biological affinity of bufadienolides with Hela cells and their correlation with properties computed from structure. Chin Pharmacol Bull. 2012;8:1079–83.

    Google Scholar 

  49. Jiang JJ, You FQ, Ma HY, Zhou Q, Zhang JF, Zhan Z, et al. Cell continuous extraction-HPLC determination biological affinity of 8 bufadienolides on MGC-803 cells and their correlation with antitumor activities. Chin J Chin Mater Med. 2011;2:205–8.

    Google Scholar 

  50. Dai YH, Shen B, Xia MY, Wang AD, Chen YL, Liu DC, et al. A new indole alkaloid from the toad venom of Bufo bufo gargarizans. Molecules. 2016;21(3):349.

    Article  CAS  PubMed  Google Scholar 

  51. Ye M, Guo DA. Analysis of bufadienolides in the Chinese drug ChanSu by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(13):1881–92.

    Article  CAS  PubMed  Google Scholar 

  52. Wang DL, Qi FH, Xu HL, Inagaki Y, Orihara Y, Sekimizu K, et al. Apoptosis-inducing activity of compounds screened and characterized from cinobufacini by bioassay-guided isolation. Mol Med Rep. 2010;3(4):717–22.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 21575146, 21635008, and 21621062), the Fundamental Research Funds for the Central public welfare research institutes (Grant No. ZZ10-007), and National Standardlization Project of Chinese Medicine (Grant No. ZYBZH-C-AH-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenwen Zhao or Haiyu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

Animal experiments were conducted with the formal approval of the ethics committee of the China Academy of Chinese Medical Sciences (Beijing, China).

Electronic supplementary material

ESM 1

(PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Han, L., Luo, M. et al. Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS. Anal Bioanal Chem 410, 4419–4435 (2018). https://doi.org/10.1007/s00216-018-1097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1097-4

Keywords

Navigation