Skip to main content
Log in

Production of highly sensitive monoclonal antibody and development of lateral flow assays for phallotoxin detection in urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phallotoxins, toxic cyclopeptides found in wild poisonous mushrooms, are predominant causes of fatal food poisoning. For the early and rapid diagnosis mushroom toxin poisoning, a highly sensitive and robust monoclonal antibody (mAb) against phallotoxins was produced for the first time. The half-maximum inhibition concentration (IC50) values of the mAb-based indirect competitive ELISAs for phallacidin (PCD) and phalloidin (PHD) detection were 0.31 ng mL−1 and 0.35 ng mL−1, respectively. In response to the demand for rapid screening of the type of poisoning and accurate determination of the severity of poisoning, colloidal gold nanoparticle (GNP) and time-resolved fluorescent nanosphere (TRFN) based lateral flow assays (LFA) were developed. The GNP-LFA has a visual cut-off value of 3.0 ng mL−1 for phallotoxins in human urine sample. The TRFN-LFA provides a quantitative readout signal with detection limit of 0.1 ng mL−1 in human urine sample. In this study, urine samples without pretreatment were used directly for the LFA strip tests, and both two LFAs were able to accomplish analysis within 10 min. The results demonstrated that LFAs based on the newly produced, highly sensitive, and robust mAb were able to be used for both rapid qualitative screening of the type of poisoning and accurate quantitative determination of the severity of poisoning after accidental ingestion by patients of toxic mushrooms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Enjalbert F, Rapior S, Nouguier-Soule J, Guillon S, Amouroux N. Treatment of amatoxin poisoning: 20-year retrospective analysis. J Toxicol-Clin Toxic. 2002;40(6):715–57. https://doi.org/10.1081/CLT-120014646.

    Article  CAS  Google Scholar 

  2. Vetter J. Toxins of Amanita phalloides. Toxicon. 1998;36(1):13–24. https://doi.org/10.1016/S0041-0101(97)00074-3.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia J, Costa VM, Carvalho A, Baptista P, de Pinho PG, MDL B, et al. Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol. 2015;86:41–55. https://doi.org/10.1016/j.fct.2015.09.008.

    Article  CAS  PubMed  Google Scholar 

  4. Wieland T. The toxic peptides from Amanita mushrooms. Int J Pept Protein Res. 1983;22(3):257–76. https://doi.org/10.1111/j.1399-3011.1983.tb02093.x.

    Article  CAS  PubMed  Google Scholar 

  5. Xu F, Gong B, Xu Z, Wang J. Reverse-phase/phenylboronic-acid-type magnetic microspheres to eliminate the matrix effects in amatoxin and phallotoxin determination via ultrahigh-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2020;332:49–55. https://doi.org/10.1016/j.foodchem.2020.127394.

    Article  CAS  Google Scholar 

  6. Chen Z, Zhang P, Zhang Z. Investigation and analysis of 102 mushroom poisoning cases in southern China from 1994 to 2012. Fungal Divers. 2014;64(1):123–31. https://doi.org/10.1007/s13225-013-0260-7.

    Article  Google Scholar 

  7. Rentsch KM. Laboratory diagnostics in acute poisoning: critical overview. Clin Chem Lab Med. 2010;48(10):1381–7. https://doi.org/10.1515/CCLM.2010.295.

    Article  CAS  PubMed  Google Scholar 

  8. Wei J, Chen J, Wu B, Chen Z, Wu J, Xie J. Determination of amanita peptides in human plasma and urine by high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Chin J Anal Chem. 2020;48(3):405–12. https://doi.org/10.19756/j.issn.0253-3820.191604.

    Article  Google Scholar 

  9. Gonmori K, Minakata K, Suzuki M, Yamagishi I, Nozawa H, Hasegawa K, et al. MALDI-TOF mass spectrometric analysis of alpha-amanitin, beta-amanitin, and phalloidin in urine. Forensic Toxicol. 2012;30(2):179–84. https://doi.org/10.1007/s11419-012-0145-6.

    Article  CAS  Google Scholar 

  10. Gicquel T, Lepage S, Fradin M, Tribut O, Duretz B, Morel I. Amatoxins (alpha- and beta-amanitin) and phallotoxin (phalloidin) analyses in urines using high-resolution accurate mass LC-MS technology. J Anal Toxicol. 2014;38(6):335–40. https://doi.org/10.1093/jat/bku035.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang S, Zhao Y, Li H, Zhou S, Chen D, Zhang Y, et al. A simple and high-throughput analysis of amatoxins and phallotoxins in human plasma, serum and rrine using UPLC-MS/MS combined with PRiME HLB elution platform. Toxins. 2016;8(5):128–41. https://doi.org/10.3390/toxins8050128.

    Article  CAS  PubMed Central  Google Scholar 

  12. Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–80. https://doi.org/10.1007/s11419-012-0145-6.

    Article  CAS  PubMed  Google Scholar 

  13. Brangel P, Sobarzo A, Parolo C, Miller BS, Howes PD, Gelkop S, et al. A serological point-of-care test for the detection of IgG antibodies against ebola virus in human survivors. ACS Nano. 2018;12(1):63–73. https://doi.org/10.1021/acsnano.7b07021.

    Article  CAS  PubMed  Google Scholar 

  14. Bever CS, Swanson KD, Hamelin EI, Filigenzi M, Poppenga RH, Kaae J, et al. Rapid, sensitive, and accurate point-of-care setection of lethal amatoxins in urine. Toxins. 2020;12(2):123–31. https://doi.org/10.3390/toxins12020123.

    Article  CAS  PubMed Central  Google Scholar 

  15. Jawaid W, Meneely JP, Campbell K, Melville K, Holmes SJ, Rice J, et al. Development and validation of a lateral flow immunoassay for the rapid screening of okadaic acid and all dinophysis toxins from shellfish extracts. J Agric Food Chem. 2015;63(38):8574–83. https://doi.org/10.1021/acs.jafc.5b01254.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Deng R, Zhang G, Li Q, Yang J, Sun Y, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. J Agric Food Chem. 2015;63(8):2172–8. https://doi.org/10.1021/jf5052128.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou X, Hui E, Yu X-L, Lin Z, Pu L-K, Tu Z, et al. Development of a rapid immunochromatographic lateral flow device capable of differentiating phytase expressed from recombinant Aspergillus niger phyA2 and genetically modified corn. J Agric Food Chem. 2015;63(17):4320–6. https://doi.org/10.1021/acs.jafc.5b00188.

    Article  CAS  PubMed  Google Scholar 

  18. Quesada-Gonzalez D, Merkoci A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63. https://doi.org/10.1016/j.bios.2015.05.050.

    Article  CAS  PubMed  Google Scholar 

  19. Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, Li P, Zhang Q, Li X, et al. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control. 2015;47:126–34. https://doi.org/10.1016/j.foodcont.2014.06.044.

    Article  CAS  Google Scholar 

  20. Tang X, Zhang Z, Li P, Zhang Q, Jiang J, Wang D, et al. Sample-pretreatment-free based high sensitive determination of aflatoxin M-1 in raw milk using a time-resolved fluorescent competitive immunochromatographic assay. RSC Adv. 2015;5(1):558–64. https://doi.org/10.1039/C4RA12097C.

    Article  CAS  Google Scholar 

  21. Juntunen E, Myyrylainen T, Salminen T, Soukka T, Pettersson K. Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal Biochem. 2012;428(1):31–8. https://doi.org/10.1021/acs.jafc.5b01254.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Wen K, Wang Z, Jiang H, Beier RC, Shen J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M-1 in milk. Food Control. 2016;60:588–95. https://doi.org/10.1016/j.foodcont.2015.08.040.

    Article  CAS  Google Scholar 

  23. Pei X, Wang Q, Li X, Xie J, Xie S, Peng T, et al. Provision of ultrasensitive quantitative gold immunochromatography for rapid monitoring of olaquindox in animal feed and water samples. Food Anal Methods. 2016;9(7):1919–27. https://doi.org/10.1007/s12161-015-0360-y.

    Article  Google Scholar 

  24. Ma L, Wang Z, Liu H, Wu C, Ding Y, Wen K. Monoclonal antibody production and the development of a quantitative time-resolved fluoroimmunoassay for rifaximin in milk. Food Agric Immunol. 2019;30(1):1135–47. https://doi.org/10.1080/09540105.2019.1669538.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Chinese Ministry of Science and Technology (MOST) for the National Key R&D Program of China (2018YFC1602600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suxia Zhang or Xuezhi Yu.

Ethics declarations

Ethics approval

Urine samples were obtained directly from volunteers, having given their informed consent for collection. The studies have been approved by Ethics Committee of Shenzhen Center for Disease Control and Prevention (Research Ethical Review Number R2018021) and have been performed in accordance with the ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2.25 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Dou, L., Mi, J. et al. Production of highly sensitive monoclonal antibody and development of lateral flow assays for phallotoxin detection in urine. Anal Bioanal Chem 413, 4979–4987 (2021). https://doi.org/10.1007/s00216-021-03457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03457-7

Keywords

Navigation