Skip to main content
Log in

A novel smartphone-based electrochemical cell sensor for evaluating the toxicity of heavy metal ions Cd2+, Hg2+, and Pb2+ in rice

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel smartphone-based electrochemical cell sensor was developed to evaluate the toxicity of heavy metal ions, such as cadmium (Cd2+), lead (Pb2+), and mercury (Hg2+) ions on Hep G2 cells. The cell sensor was fabricated with reduced graphene oxide (RGO)/molybdenum sulfide (MoS2) composites to greatly improve the biological adaptability and amplify the electrochemical signals. Differential pulse voltammetry (DPV) was employed to measure the electrical signals induced by the toxicity of heavy metal ions. The results showed that Cd2+, Hg2+, and Pb2+ significantly reduced the viability of Hep G2 cells in a dose-dependent manner. The IC50 values obtained by this method were 49.83, 36.94, and 733.90 μM, respectively. A synergistic effect was observed between Cd2+ and Pb2+ and between Hg2+ and Pb2+, and an antagonistic effect was observed between Cd2+ and Hg2+, and an antagonistic effect at low doses and an additive effect at high doses were found in the ternary mixtures of Cd2+, Hg2+, and Pb2+. These electrochemical results were confirmed via MTT assay, SEM and TEM observation, and flow cytometry. Therefore, this new electrochemical cell sensor provided a more convenient, sensitive, and flexible toxicity assessment strategy than traditional cytotoxicity assessment methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta. 2018;178:324–38.

    Article  CAS  Google Scholar 

  2. Kim J-J, Kim Y-S, Kumar V. Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol. 2019;54:226–31.

    Article  CAS  Google Scholar 

  3. Rebelo FM, Caldas ED. Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res. 2016;151:671–88.

    Article  CAS  Google Scholar 

  4. Hamida S, Ouabdesslam L, Ladjel A, Escudero M, Anzano J. Determination of cadmium, copper, lead, and zinc in pilchard sardines from the Bay of Boumerdés by atomic absorption spectrometry. Anal Lett. 2018;51(16):2501–8.

    Article  Google Scholar 

  5. Ramdani S, Amar A, Belhsaien K, El Hajjaji S, Ghalem S, Zouahri A, et al. Assessment of heavy metal pollution and ecological risk of roadside soils in Tlemcen (Algeria) using flame-atomic absorption spectrometry. Anal Lett. 2018;51(15):2468–87.

    Article  CAS  Google Scholar 

  6. Jaswal BBS, Rai PK, Singh T, Zorba V, Singh VK. Detection and quantification of heavy metal elements in gallstones using X-ray fluorescence spectrometry. Xray Spectrom. 2019;48(3):178–87.

    Article  CAS  Google Scholar 

  7. Mohamed R, Zainudin BH, Yaakob AS. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chem. 2020;303:125392.

    Article  CAS  Google Scholar 

  8. Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron. 2020;147:111777.

    Article  CAS  Google Scholar 

  9. Cui Z, Luan X, Jiang H, Li Q, Xu G, Sun C, et al. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere. 2018;200:322–9.

    Article  CAS  Google Scholar 

  10. Lauri A, Soliman D, Omar M, Stelzl A, Ntziachristos V, Westmeyer GG. Whole-cell photoacoustic sensor based on pigment relocalization. ACS Sens. 2019;4(3):603–12.

    Article  CAS  Google Scholar 

  11. Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD. Cell-based biosensors: recent trends, challenges and future perspectives. Biosens Bioelectron. 2019;141:111435.

    Article  CAS  Google Scholar 

  12. Jeon H, Lee E, Kim D, Lee M, Ryu J, Kang C, et al. Cell-based biosensors based on intein-mediated protein engineering for detection of biologically active signaling molecules. Anal Chem. 2018;90(16):9779–86.

    Article  CAS  Google Scholar 

  13. Jiang D, Ge P, Wang L, Jiang H, Yang M, Yuan L, et al. A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosens Bioelectron. 2019;130:299–306.

    Article  CAS  Google Scholar 

  14. Jiang D, Liu Y, Jiang H, Rao S, Fang W, Wu M, et al. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens Bioelectron. 2018;102:396–402.

    Article  CAS  Google Scholar 

  15. Cardoso RM, Kalinke C, Rocha RG, Dos Santos PL, Rocha DP, Oliveira PR, et al. Additive-manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta. 2020;1118:73–91.

    Article  CAS  Google Scholar 

  16. Shin J, Kim S, Yoon T, Joo C, Jung H-I. Smart Fatigue Phone: real-time estimation of driver fatigue using smartphone-based cortisol detection. Biosens Bioelectron. 2019;136:106–11.

    Article  CAS  Google Scholar 

  17. Deng W, Dou Y, Song P, Xu H, Aldalbahi A, Chen N, et al. Lab on smartphone with interfaced electrochemical chips for on-site gender verification. J Electroanal Chem. 2016;777:117–22.

    Article  CAS  Google Scholar 

  18. Morais S, Tortajada-Genaro LA, Maquieira Á, Gonzalez Martinez M-Á. Biosensors for food allergy detection according to specific IgE levels in serum. Trends Anal Chem. 2020;127.

  19. Minnetti E, Chiariotti P, Paone N, Garcia G, Vicente H, Violini L, et al. A smartphone integrated hand-held gap and flush measurement system for in line quality control of car body assembly. Sensors. 2020;20(11):3300.

    Article  Google Scholar 

  20. Lu L, Jiang Z, Hu Y, Zhou H, Liu G, Chen Y, et al. A portable optical fiber SPR temperature sensor based on a smart-phone. Opt Express. 2019;27(18):25420–7.

    Article  CAS  Google Scholar 

  21. Jiang D, Zhu P, Jiang H, Ji J, Sun X, Gu W, et al. Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosens Bioelectron. 2015;70:482–90.

    Article  CAS  Google Scholar 

  22. Ramaraj S, Sakthivel M, Chen S-M, Elshikh MS, Chen T-W, Yu M-C, et al. Electrochemical sensing of anti-inflammatory agent in paramedical sample based on FeMoSe2 modified SPCE: comparison of various preparation methods and morphological effects. Anal Chim Acta. 2019;1083:88–100.

    Article  CAS  Google Scholar 

  23. Yin S, Li C, Wang S, Ren X, Zeng L, Zhang L. The construction of a 2D MoS2-based binder-free electrode with a honeycomb structure for enhanced electrochemical performance. Dalton Trans. 2020;49(24):8036–40.

    Article  CAS  Google Scholar 

  24. Mazaheri A, Lee M, Van Der Zant HS, Frisenda R, Castellanos-Gomez A. MoS2-on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale. 2020;12(37):19068–74.

    Article  CAS  Google Scholar 

  25. Ye Y, Guo H, Sun X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron. 2019;126:389–404.

    Article  CAS  Google Scholar 

  26. Xiao P, Mao J, Ding K, Luo W, Hu W, Zhang X, et al. Solution-processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv Mater. 2018;30(31):1801729.

    Article  Google Scholar 

  27. Geleta GS, Zhao Z, Wang Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B 1. Analyst. 2018;143(7):1644–9.

    Article  CAS  Google Scholar 

  28. Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens Bioelectron. 2018;110:207–17.

    Article  CAS  Google Scholar 

  29. Law S, Leung AW, Xu C. Folic acid-modified celastrol nanoparticles: synthesis, characterization, anticancer activity in 2D and 3D breast cancer models. Artif Cells Nanomed Biotechnol. 2020;48(1):542–59.

    Article  CAS  Google Scholar 

  30. Gu W, Zhu P, Jiang D, He X, Li Y, Ji J, et al. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens Bioelectron. 2015;70:447–54.

    Article  CAS  Google Scholar 

  31. Liu Q, Xu S, Niu C, Li M, He D, Lu Z, et al. Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron. 2015;64:119–25.

    Article  CAS  Google Scholar 

  32. Zhang Y, Liu J-M, Yan X-P. Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem. 2013;85(1):228–34.

    Article  CAS  Google Scholar 

  33. Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, et al. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron. 2017;97:345–51.

    Article  CAS  Google Scholar 

  34. Chen C, Wang Y, Zhao X, Qian Y, Wang Q. Combined toxicity of butachlor, atrazine and λ-cyhalothrin on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Chemosphere. 2014;112:393–401.

    Article  CAS  Google Scholar 

  35. Wang Y, Ni Y. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection. Anal Chem. 2014;86(15):7463–70.

    Article  CAS  Google Scholar 

  36. Jiang H, Yang J, Wan K, Jiang D, Jin C. Miniaturized paper-supported 3D cell-based electrochemical sensor for bacterial lipopolysaccharide detection. ACS Sens. 2020;5(5):1325–35.

    Article  CAS  Google Scholar 

  37. Wang X, Zhu P, Pi F, Jiang H, Shao J, Zhang Y, et al. A sensitive and simple macrophage-based electrochemical biosensor for evaluating lipopolysaccharide cytotoxicity of pathogenic bacteria. Biosens Bioelectron. 2016;81:349–57.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The National Key Research and Development Program of China (2020YFC1606801), Natural Science Foundation of Jiangsu Province (BK20180160), Special Program of the State Administration for Market Regulation (2019YJ047), and Science and Technology Program of Nanjing Administration for Market Regulation (Kj2019042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Sheng, K., Gui, G. et al. A novel smartphone-based electrochemical cell sensor for evaluating the toxicity of heavy metal ions Cd2+, Hg2+, and Pb2+ in rice. Anal Bioanal Chem 413, 4277–4287 (2021). https://doi.org/10.1007/s00216-021-03379-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03379-4

Keywords

Navigation