Skip to main content
Log in

Investigation of lipase-ligand interactions in porcine pancreatic extracts by microscale thermophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The evaluation of binding affinities between large biomolecules and small ligands is challenging and requires highly sensitive techniques. Microscale thermophoresis (MST) is an emerging biophysical technique used to overcome this limitation. This work describes the first MST binding method to evaluate binding affinities of small ligands to lipases from crude porcine pancreatic extracts. The conditions of the MST assay were thoroughly optimized to successfully evaluate the dissociation constant (Kd) between pancreatic lipases (PL) and triterpenoid compounds purified from oakwood. More precisely, the fluorescent labeling of PL (PL*) using RED-NHS dye was achieved via a buffer exchange procedure. The MST buffer was composed of 20 mM NaH2PO4 + 77 mM NaCl (pH 6.6) with 0.05% Triton-X added to efficiently prevent protein aggregation and adsorption, even when using only standard, uncoated MST capillaries. Storage at −20 °C ensured stability of PL* and its fluorescent signal. MST results showed that crude pancreatic extracts were suitable as a source of PL for the evaluation of binding affinities of small ligands. Quercotriterpenoside-I (QTT-I) demonstrated high PL* binding affinity (31 nM) followed by 3-O-galloylbarrinic acid (3-GBA) (500 nM) and bartogenic acid (BA) (1327 nM). To enrich the 50 kDa lipase responsible for the majority of hydrolysis activity in the crude pancreatic extracts, ammonium sulfate precipitation was attempted and its efficiency confirmed using capillary electrophoresis (CE)-based activity assays and HRMS. Moreover, to accurately explain enzyme modulation mechanism, it is imperative to complement binding assays with catalytic activity ones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Speer TW. Dissociation constant (Kd). In: Brady LW, Yaeger TE, editors. Encyclopedia of radiation oncology. Berlin, Heidelberg: Springer; 2013. https://doi.org/10.1007/978-3-540-85516-3_675.

    Chapter  Google Scholar 

  2. Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: experimental and computational techniques. Expert Opin Drug Discovery. 2019;14:755–68. https://doi.org/10.1080/17460441.2019.1623202.

    Article  CAS  Google Scholar 

  3. Mallik R, Yoo M, Briscoe C, Hage D. Analysis of drug-protein binding by ultrafast affinity chromatography using immobilized human serum albumin. J Chromatogr A. 2010;1217:2796–803. https://doi.org/10.1016/j.chroma.2010.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, et al. High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents. Analyst. 2018;143:374–91. https://doi.org/10.1039/C7AN01469D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hage DS. Analysis of biological interactions by affinity chromatography: clinical and pharmaceutical applications. Clin Chem. 2017;63:1083–93. https://doi.org/10.1373/clinchem.2016.262253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Whately H. Basic principles and modes of capillary electrophoresis. In: Petersen J, Mohammad AA, editors. Clinical and forensic applications of capillary electrophoresis. Totowa: Humana Press; 2001. p. 21–58. https://doi.org/10.1007/978-1-59259-120-6.

    Chapter  Google Scholar 

  7. Lipponen K, Tähkä S, Samuelsson J, Jauhiainen M, Metso J, Karhu GC, et al. Partial-filling affinity capillary electrophoresis and quartz crystal microbalance with adsorption energy distribution calculations in the study of biomolecular interactions with apolipoprotein E as interaction partner. Anal Bioanal Chem. 2014;406:4137–46. https://doi.org/10.1007/s00216-014-7821-9.

    Article  CAS  PubMed  Google Scholar 

  8. Ascoli GA, Domenici E, Bertucci C. Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality. 2006;18:667–79. https://doi.org/10.1002/chir.20301.

    Article  CAS  PubMed  Google Scholar 

  9. Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst. 2017;142:1847–66. https://doi.org/10.1039/c7an00198c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun L, Gidley MJ, Warren FJ. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Mol Nutr Food Res. 2017;61:1–13. https://doi.org/10.1002/mnfr.201700324.

    Article  CAS  Google Scholar 

  11. Wu X, He W, Yao L, Zhang H, Liu Z, Wang W, et al. Characterization of binding interactions of (−)-epigallocatechin-3-gallate from green tea and lipase. J Agric Food Chem. 2013;61:8829–35. https://doi.org/10.1021/jf401779z.

    Article  CAS  PubMed  Google Scholar 

  12. Lin K, Wu G. Isothermal titration calorimetry assays to measure binding affinities in vitro. In: Hergovich A, editor. The Hippo pathway. Methods in molecular biology. New York: Humana Press; 2019. p. 257–72. https://doi.org/10.31826/9781463230777-019.

    Chapter  Google Scholar 

  13. Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit. 2008;21:289–311. https://doi.org/10.1002/jmr.909.

    Article  CAS  PubMed  Google Scholar 

  14. Bhardwaj SK, Basu T. Study on binding phenomenon of lipase enzyme with tributyrin on the surface of graphene oxide array using surface plasmon resonance. Thin Solid Films. 2018;645:10–8. https://doi.org/10.1016/j.tsf.2017.10.021.

    Article  CAS  Google Scholar 

  15. Sparks RP, Jenkins JL, Fratti R. Use of surface plasmon resonance (SPR) to determine binding affinities and kinetic parameters between components important in fusion machinery. Methods Mol Biol. 2019;1860:199–210. https://doi.org/10.1007/978-1-4939-8760-3_12.

    Article  CAS  PubMed  Google Scholar 

  16. Helmerhorst E, Chandler DJ, Nussio M, Mamotte CD. Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective. Clin Biochem Rev. 2012;33:161–73.

    PubMed  PubMed Central  Google Scholar 

  17. Sugiki T, Furuita K, Fujiwara T, Kojima C. Current NMR techniques for structure-based drug discovery. Molecules. 2018;23:1–27. https://doi.org/10.3390/molecules23010148.

    Article  CAS  Google Scholar 

  18. Silva MS, Pietrobom D. Simplification of lipase design in the enzymatic kinetic resolution of amines by saturation transfer difference NMR. J Braz Chem Soc. 2016;27:1918–23. https://doi.org/10.5935/0103-5053.20160077.

    Article  CAS  Google Scholar 

  19. Dias DM, Ciulli A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol. 2014;116:101–12. https://doi.org/10.1016/j.pbiomolbio.2014.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398:53–66. https://doi.org/10.1007/s00216-010-3737-1.

    Article  CAS  PubMed  Google Scholar 

  21. Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D. Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed. 2010;49:2238–41. https://doi.org/10.1002/anie.200903998.

    Article  CAS  Google Scholar 

  22. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:1–7. https://doi.org/10.1038/ncomms1093.

    Article  CAS  Google Scholar 

  23. Schubert T, Längst G. Studying epigenetic interactions using microscale thermophoresis (MST). AIMS Biophys. 2015;2:370–80. https://doi.org/10.3934/biophy.2015.3.370.

    Article  CAS  Google Scholar 

  24. Berleth M, Berleth N, Minges A, Hänsch S, Burkart RC, Stork B, et al. Molecular analysis of protein-protein interactions in the ethylene pathway in the different ethylene receptor subfamilies. Front Plant Sci. 2019;10:1–15. https://doi.org/10.3389/fpls.2019.00726.

    Article  Google Scholar 

  25. Torres OB, Duval AJ, Sulima A, Antoline JFG, Jacobson AE, Rice KC, et al. A rapid solution-based method for determining the affinity of heroin hapten-induced antibodies to heroin, its metabolites, and other opioids. Anal Bioanal Chem. 2018;410:3885–903. https://doi.org/10.1007/s00216-018-1060-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sloan J, Hakenjos JP, Gebert M, Ermakova O, Gumiero A, Stier G, et al. Structural basis for the complex DNA binding behavior of the plant stem cell regulator WUSCHEL. Nat Commun. 2020;11:1–16. https://doi.org/10.1038/s41467-020-16024-y.

    Article  CAS  Google Scholar 

  27. Moon MH, Hilimire TA, Sanders AM, Schneekloth JS. Measuring RNA-ligand interactions with microscale thermophoresis. Biochemistry. 2018;57:4638–43. https://doi.org/10.1021/acs.biochem.7b01141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubio MJ, Svobodová M, Mairal T, Schubert T, Künne S, Mayer G, et al. β -Conglutin dual aptamers binding distinct aptatopes. Anal Bioanal Chem. 2016;408:875–84. https://doi.org/10.1007/s00216-015-9179-z.

    Article  CAS  Google Scholar 

  29. Syntia F, Nehmé R, Claude B, Morin P. Human neutrophil elastase inhibition studied by capillary electrophoresis with laser induced fluorescence detection and microscale thermophoresis. J Chromatogr A. 2016;1431:215–23. https://doi.org/10.1016/j.chroma.2015.12.079.

    Article  CAS  PubMed  Google Scholar 

  30. Lee N, Wiegand S. Thermophoretic micron-scale devices : practical approach and review. Entropy. 2020;22:1–24. https://doi.org/10.3390/e22090950.

    Article  CAS  Google Scholar 

  31. Fayad S, Morin P, Nehmé R. Use of chromatographic and electrophoretic tools for assaying elastase, collagenase, hyaluronidase, and tyrosinase activity. J Chromatogr A. 2017;1529:1–28. https://doi.org/10.1016/j.chroma.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  32. Rainard JM, Pandarakalam GC, McElroy SP. Using microscale thermophoresis to characterize hits from high-throughput screening: a European lead factory perspective. SLAS Discov. 2018;23:225–41. https://doi.org/10.1177/2472555217744728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, et al. Microscale thermophoresis: interaction analysis and beyond. J Mol Struct. 2014;1077:101–13. https://doi.org/10.1016/j.molstruc.2014.03.009.

    Article  CAS  Google Scholar 

  34. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol. 2011;9:342–53. https://doi.org/10.1089/adt.2011.0380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muntholib, Sulistyaningrum D, Subandi, Siti M. Identification of flavonoid isolates of papaya (Carica papaya L.) seed and their activity as pancreatic lipase inhibitors. AIP Conf Proc. 2020;2231:1–11. https://doi.org/10.1063/5.0003456.

    Article  CAS  Google Scholar 

  36. Du X, Bai M, Huang Y, Jiang Z, Chen F, Ni H, et al. Inhibitory effect of astaxanthin on pancreatic lipase with inhibition kinetics integrating molecular docking simulation. J Funct Foods. 2018;48:551–7. https://doi.org/10.1016/j.jff.2018.07.045.

    Article  CAS  Google Scholar 

  37. Xu-Dong H, Li-Lin S, Yun-Feng C, Yi-Nan W, Qi Z, Sheng-Quan F, et al. Pancreatic lipase inhibitory constituents from Fructus Psoraleae. Chin J Nat Med. 2020;18:369–78. https://doi.org/10.3724/SP.J.1009.2019.000000.

    Article  Google Scholar 

  38. Hao G, Yang L, Mazsaroff I, Lin M. Quantitative determination of lipase activity by liquid chromatography-mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1579–81. https://doi.org/10.1016/j.jasms.2007.05.019.

    Article  CAS  PubMed  Google Scholar 

  39. Al Hamoui Dit Banni G, Nasreddine R, Fayad S, Ngoc PC, Rossi JC, Leclercq L, et al. Screening for pancreatic lipase natural modulators by capillary electrophoresis hyphenated to spectrophotometric and conductometric dual detection. Analyst. 2021;146:1386–401. https://doi.org/10.1039/D0AN02234A.

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Ma R-T, Shi Y-P. An immobilization enzyme for screening lipase inhibitors from Tibetan medicines. J Chromatogr A. 1615;2020:1–8. https://doi.org/10.1016/j.chroma.2019.460711.

    Article  CAS  Google Scholar 

  41. Tang Y, Li W, Wang Y, Zhang Y, Ji Y. Rapid on-line system for preliminary screening of lipase inhibitors from natural products by integrating capillary electrophoresis with immobilized enzyme microreactor. J Sep Sci. 2019;43:1003–10. https://doi.org/10.1002/jssc.201900523.

    Article  CAS  Google Scholar 

  42. Fayad S, Nehmé R, Langmajerová M, Ayela B, Colas C, Maunit B, et al. Hyaluronidase reaction kinetics evaluated by capillary electrophoresis with UV and high-resolution mass spectrometry (HRMS) detection. Anal Chim Acta. 2017;951:140–50. https://doi.org/10.1016/j.aca.2016.11.036.

    Article  CAS  PubMed  Google Scholar 

  43. Nehmé H, Nehmé R, Lafite P, Routier S, Morin P. Human protein kinase inhibitor screening by capillary electrophoresis using transverse diffusion of laminar flow profiles for reactant mixing. J Chromatogr A. 2013;1314:298–305. https://doi.org/10.1016/j.chroma.2013.08.046 Accessed 9 Jan 2019.

    Article  CAS  PubMed  Google Scholar 

  44. Panuganti K, Nguyen M, Kshirsagar R. Obesity. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK459357/.

    Google Scholar 

  45. World Health Organization, Obesity and overweight 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 6 Dec 2020.

  46. Liu TT, Liu XT, Chen QX, Shi Y. Lipase inhibitors for obesity: a review. Biomed Pharmacother. 2020;128:1–29. https://doi.org/10.1016/j.biopha.2020.110314.

    Article  CAS  Google Scholar 

  47. Bonamichi B, Parente EB, dos Santos RB, Beltzhoover R, Lee J, Salles JEN. The challenge of obesity treatment: a review of approved drugs and new therapeutic targets. J Obes Eat Disord. 2018;4:1–10. https://doi.org/10.21767/2471-8203.100034.

    Article  Google Scholar 

  48. Solomon LR, Nixon AC, Ogden L, Nair B. Orlistat-induced oxalate nephropathy: an under-recognised cause of chronic kidney disease. BMJ Case Rep. 2017. https://doi.org/10.1136/bcr-2016-218623.

  49. Beyea MM, Garg AX, Weir MA. Does orlistat cause acute kidney injury ? Ther Adv Drug Saf. 2012;3:53–7. https://doi.org/10.1177/2042098611429985.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sridhar SNC, Palawat S, Paul AT. Design, synthesis, biological evaluation and molecular modelling studies of indole glyoxylamides as a new class of potential pancreatic lipase inhibitors. Bioorg Chem. 2019;85:373–81. https://doi.org/10.1016/j.bioorg.2019.01.012.

    Article  CAS  PubMed  Google Scholar 

  51. Huang R, Zhang Y, Shen S, Zhi Z, Chen H, Chen S, et al. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: an in vitro study. Food Chem. 2020;126785. https://doi.org/10.1016/j.foodchem.2020.126785.

  52. Hu Q, Guan XQ, Song LL, Wang HN, Xiong Y, Liu JL, et al. Inhibition of pancreatic lipase by environmental xenoestrogens. Ecotoxicol Environ Saf. 2020;192:110305. https://doi.org/10.1016/j.ecoenv.2020.110305.

    Article  CAS  PubMed  Google Scholar 

  53. Segura RL, Betancor L, Palomo JM, Hidalgo A, Fernández-Lorente G, Terreni M, et al. Purification and identification of different lipases contained in PPL commercial extracts: a minor contaminant is the main responsible of most esterasic activity. Enzym Microb Technol. 2006;39:817–23. https://doi.org/10.1016/j.enzmictec.2006.01.007.

    Article  CAS  Google Scholar 

  54. Gammacurta M, Waffo-Teguo P, Winstel D, Dubourdieu D, Marchal A. Isolation of taste-active triterpenoids from Quercus robur: sensory assessment and identification in wines and spirit. J Nat Prod. 2020;83:1611–22. https://doi.org/10.1021/acs.jnatprod.0c00106.

    Article  CAS  PubMed  Google Scholar 

  55. Marchal A, Prida A, Dubourdieu D. New approach for differentiating sessile and pedunculate oak: development of a LC-HRMS method to quantitate triterpenoids in wood. J Agric Food Chem. 2016;64:618–26. https://doi.org/10.1021/acs.jafc.5b05056.

    Article  CAS  PubMed  Google Scholar 

  56. Anthis NJ, Clore GM. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 2013;22:851–8. https://doi.org/10.1002/pro.2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shahani KM, Khan IM, Chandan RC. Bovine pancreatic lipase. I. isolation, homogeneity, and characterization. J Dairy Sci. 1976;59:369–75. https://doi.org/10.3168/jds.S0022-0302(76)84214-2.

    Article  CAS  PubMed  Google Scholar 

  58. Algar WR. A brief introduction to traditional bioconjugate chemistry. In: Algar WR, Dawson P, Medintz I, editors. Chemoselective and bioorthogonal ligation reactions: concepts and applications, vol. 1. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p. 3–36.

    Chapter  Google Scholar 

  59. Roy I, Gupta MN. Freeze-drying of proteins : some emerging concerns. Biotechnol Appl Biochem. 2004;39:165–77. https://doi.org/10.1042/BA20030133.

    Article  CAS  PubMed  Google Scholar 

  60. Heck AM, Yanovski JA, Calis KA. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy. 2000;20:270–9. https://doi.org/10.1592/phco.20.4.270.34882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wingfield P. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci Appendix. 2001;3:1–10. https://doi.org/10.1002/0471140864.psa03fs13.

    Article  Google Scholar 

  62. Polgár L. Basic kinetic mechanisms of proteolytic enzymes. In: Sterchi E, Stöcker W, editors. Proteolytic enzymes: tools and targets. Berlin Heidelberg: Springer-Verlag; 1999. p. 148–66. https://doi.org/10.1007/978-3-642-59816-6.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. B. Claude for her aid and advices in lipase purification experiments, Dr. D. Da Silva for his aid and advices for MS analyses and lipase desalting, F. Coudray for the design and construction of the 3D printed scaffold for the C4D cell utilized in CE assays, and C. Maffre for technical support.

Funding

This work has been financially supported by the Région Centre Val de Loire (PhD fellowship of G. Al Hamoui Dit Banni) and the Labex SynOrg (ANR-11- LABX-0029).

Author information

Authors and Affiliations

Authors

Contributions

G. Al Hamoui Dit Banni and R. Nasreddine planned and performed MST and CE-based enzymatic experiments and analyzed the corresponding data; G. Al Hamoui Dit Banni and C. Colas carried out the HRMS assessment of PL purification; S. Fayad and A. Marchal planned and performed purifications and characterization of oakwood and wine extracts. R. Nehmé managed the project and data analysis. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Reine Nehmé.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Hamoui Dit Banni, G., Nasreddine, R., Fayad, S. et al. Investigation of lipase-ligand interactions in porcine pancreatic extracts by microscale thermophoresis. Anal Bioanal Chem 413, 3667–3681 (2021). https://doi.org/10.1007/s00216-021-03314-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03314-7

Keywords

Navigation