Skip to main content
Log in

Partial-filling affinity capillary electrophoresis and quartz crystal microbalance with adsorption energy distribution calculations in the study of biomolecular interactions with apolipoprotein E as interaction partner

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Adsorption energy distribution (AED) calculations were successfully applied to partial-filling affinity capillary electrophoresis (PF-ACE) to facilitate more detailed studies of biomolecular interactions. PF-ACE with AED calculations was employed to study the interactions between two isoforms of apolipoprotein E (apoE) and dermatan sulfate (DS), and a quartz crystal microbalance (QCM) was used in combination with AED calculations to examine the interactions of the 15-amino-acid peptide fragment of apoE with DS. The heterogeneity of the interactions was elucidated. Microscale thermophoresis was used to validate the results. The interactions studied are of interest because, in vivo, apolipoprotein E localizes on DS-containing regions in the extracellular matrix of human vascular subendothelium. Two-site binding was demonstrated for the isoform apoE3 and DS, but only one-site binding for apoE2–DS. Comparable affinity constants were obtained for the apoE2–DS, apoE3–D3, and 15-amino-acid peptide of apoE–DS using the three techniques. The results show that combining AED calculations with modern biosensing techniques can open up another dimension in studies on the heterogeneity and affinity constants of biological molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–b

Similar content being viewed by others

References

  1. Hurt-Camejo E, Olsson U, Wiklund O, Bondjers G, Camejo G (1997) Cellular consequences of the association of ApoB lipoproteins with proteoglycans: potential contribution to atherogenesis. Arterioscler Thromb Vasc Biol 17(6):1011–1017

  2. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15(5):551–561

    Article  CAS  Google Scholar 

  3. Radhakrishnamurthy B, Srinivasan SR, Vijayagopal P, Berenson GS (1990) Arterial-wall proteoglycans—biological properties related to pathogenesis of atherosclerosis. Eur Heart J 11:148–157

  4. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16):1832–1844

  5. Öörni K, Kovanen PT (2006) Enhanced extracellular lipid accumulation in acidic environments. Curr Opin Lipidol 17(5):534–540

    Article  Google Scholar 

  6. Volpi N (2010) Dermatan sulfate: recent structural and activity data. Carbohydr Polym 82:233–239

  7. Thelin MA, Bartolini B, Axelsson J, Gustafsson R, Tykesson E, Pera E, Oldberg A, Maccarana M, Malmstrom A (2013) Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J 280(10):2431–2446

    Article  CAS  Google Scholar 

  8. Libby P (2001) Managing the risk of atherosclerosis: the role of high-density lipoprotein. Am J Cardiol 88(12):3N–8N

    Article  CAS  Google Scholar 

  9. Rader DJ (2002) High-density lipoproteins and atherosclerosis. Am J Cardiol 90(8A):62i–70i

    Article  CAS  Google Scholar 

  10. Zuliani G, Vigna GB, Fellin R (2007) The anti-atherogenic properties of HDL particles. Int Congr Ser 1303:103–110

    Article  CAS  Google Scholar 

  11. Weisgraber KH, Rall SC, Mahley RW, Milne RW, Marcel YL, Sparrow JT (1986) Human apolipoprotein-E: determination of the heparin binding-sites of apolipoprotein-E3. J Biol Chem 261(5):2068–2076

  12. Saito H, Dhanasekaran P, Nguyen D, Baldwin F, Weisgraber KH, Wehrli S, Phillips MC, Lund-Katz S (2003) Characterization of the heparin binding sites in human apolipoprotein E. J Biol Chem 278(17):14782–14787

    Article  CAS  Google Scholar 

  13. Olsson U, Camejo G, HurtCamejo E, Elfsber K, Wiklund O, Bondjers G (1997) Possible functional interactions of apolipoprotein B-100 segments that associate with cell proteoglycans and the ApoB/E receptor. Arterioscler Thromb Vasc Biol 17(1):149–155

    Article  CAS  Google Scholar 

  14. Weisgraber KH, Rall SC (1987) Human apolipoprotein B-100 heparin-binding sites. J Biol Chem 262(23):11097–11103

    CAS  Google Scholar 

  15. Camejo G, Olofsson SO, Lopez F, Carlsson P, Bondjers G (1988) Identification of Apo-B-100 segments mediating the interaction of low-density lipoproteins with arterial proteoglycans. Arteriosclerosis 8(4):368–377

    Article  CAS  Google Scholar 

  16. O’Brien KD, Olin KL, Alpers CE, Chiu W, Ferguson M, Hudkins K, Wight TN, Chait A (1998) Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 98(6):519–527

  17. Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9):117r–125r

    Article  CAS  Google Scholar 

  18. Siest G, Pillot T, Regisbailly A, Leiningermuller B, Steinmetz J, Galteau PM, Visvikis S (1995) Apolipoprotein-E: an important gene and protein to follow in laboratory medicine. Clin Chem 41(8):1068–1086

  19. Seripa D, D’Onofrio G, Panza F, Cascavilla L, Masullo C, Pilotto A (2011) The genetics of the human APOE polymorphism. Rejuvenation Res 14(5):491–500

  20. Seet WT, Anne TJAM, Yen TS (2004) Apolipoprotein E genotyping in the Malay, Chinese and Indian ethnic groups in Malaysia: a study on the distribution of the different apoE alleles and genotypes. Clin Chim Acta 340(1–2):201–205

  21. Corbo RM, Scacchi R (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 63:301–310

  22. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U, Danesh J (2007) Association of apolipoprotein E genotypes with lipid levels and coronary risk. J Am Med Assoc 298(11):1300–1311

    Article  CAS  Google Scholar 

  23. Hernández VA, Samuelsson J, Forssén P, Fornstedt T (2013) Enhanced interpretation of adsorption data generated by liquid chromatography and by modern biosensors. J Chromatogr A 1317:22–31

    Article  Google Scholar 

  24. Lipponen K, Stege PW, Cilpa G, Samuelsson J, Fornstedt T, Riekkola M-L (2011) Three different approaches for the clarification of the interactions between lipoproteins and chondroitin-6-sulfate. Anal Chem 83(15):6040–6046

    Article  CAS  Google Scholar 

  25. Cilpa-Karhu G, Lipponen K, Samuelsson J, Öörni K, Fornstedt T, Riekkola M-L (2013) Three complementary techniques for the clarification of temperature effect on low-density lipoprotein–chondroitin-6-sulfate interaction. Anal Biochem 443:139–147

  26. Jenik M, Schirhagl R, Schirk C, Hayden O, Lieberzeit P, Blaas D, Paul G, Dickert FL (2009) Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Anal Chem 81(13):5320–5326

    Article  CAS  Google Scholar 

  27. Brown A, Desharnais R, Roy BC, Malik S, Gomez FA (2005) Optimization of conditions for flow-through partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors. Anal Chim Acta 540(2):403–410

    Article  CAS  Google Scholar 

  28. Wang AJ, Vainikka K, Witos J, D’Ulivo L, Cilpa G, Kovanen PT, Oorni K, Jauhiainen M, Riekkola M-L (2010) Partial filling affinity capillary electrophoresis with cationic poly(vinylpyrrolidone)-based copolymer coatings for studies on human lipoprotein–steroid interactions. Anal Biochem 399(1):93–101

  29. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100

    Article  Google Scholar 

  30. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9(4):342–353

    Article  CAS  Google Scholar 

  31. Seidel SAI, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59(3):301–315

    Article  CAS  Google Scholar 

  32. Seidel SAI, Wienken CJ, Geissler S, Jerabek-Willemsen M, Duhr S, Reiter A, Trauner D, Braun D, Baaske P (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein–ligand binding. Angew Chem Int Ed 51(42):10656–10659

  33. D’Ulivo L, Witos J, Öörni K, Kovanen PT, Riekkola M-L (2009) CEC: a tool for mimicking collagen–surface interactions with apolipoprotein B-100 peptides. Electrophoresis 30(22):3838–3845

  34. Morrow JA, Arnold KS, Weisgraber KH (1999) Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli. Protein Expr Purif 16(2):224–230

  35. Rall SC, Weisgraber KH, Mahley RW (1986) Isolation and characterization of apolipoprotein E. In: Segrest JP, Albers JJ (eds) Methods in enzymology. Academic, Orlando, pp 273–279

  36. D’Ulivo L, Saint-Guirons J, Ingemarsson B, Riekkola M-L (2010) Quartz crystal microbalance, a valuable tool for elucidation of interactions between apoB-100 peptides and extracellular matrix components. Anal Bioanal Chem 396(4):1373–1380

  37. Lipponen K, Liu Y, Stege PW, Oorni K, Kovanen PT, Riekkola M-L (2012) Capillary electrochromatography and quartz crystal microbalance, valuable techniques in the study of heparin–lipoprotein interactions. Anal Biochem 424(1):71–78

  38. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution–surface interface. Biomacromol 4:1099–1120

  39. Sauerbrey GZ (1959) The use of quartz crystal oscillators for weighing thin layers and for micro-weighing. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  40. Guiochon G, Shirazi DG, Felinger A, Katti AM (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Academic, Boston

  41. Gotmar G, Samuelsson J, Karlsson A, Fornstedt T (2007) Thermodynamic characterization of the adsorption of selected chiral compounds on immobilized amyloglucosidase in liquid chromatography. J Chromatogr A 1156(1–2):3–13

    Article  Google Scholar 

  42. Arnell R, Ferraz N, Fornstedt T (2006) Analytical characterization of chiral drug-protein interactions: comparison between the optical biosensor (surface plasmon resonance) assay and the HPLC perturbation method. Anal Chem 78(5):1682–1689

  43. Sandblad P, Arnell R, Samuelsson J, Fornstedt T (2009) Approach for reliable evaluation of drug proteins interactions using surface plasmon resonance technology. Anal Chem 81(9):3551–3559

    Article  CAS  Google Scholar 

  44. Stanley BJ, Bialkowski SE, Marshall DB (1993) Analysis of 1st-order rate-constant spectra with regularized least-squares and expectation maximization. 1. Theory and numerical characterization. Anal Chem 65(3):259–267

  45. Williams BA, Vigh C (1996) Fast, accurate mobility determination method for capillary electrophoresis. Anal Chem 68(7):1174–1180

    Article  CAS  Google Scholar 

  46. Fang N, Zhang H, Li JW, Li HW, Yeung ES (2007) Mobility-based wall adsorption isotherms for comparing capillary electrophoresis with single-molecule observations. Anal Chem 79(16):6047–6054

    Article  CAS  Google Scholar 

  47. Duhr S, Braun D (2006) Thermophoretic depletion follows Boltzmann distribution. Phys Rev Lett 96(16):168301

    Article  Google Scholar 

  48. Swillens S (1995) Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer-analysis. Mol Pharmacol 47(6):1197–1203

  49. Villareal V, Kaddis J, Azad M, Zurita C, Silva I, Hernandez L, Rudolph M, Moran J, Gomez FA (2003) Partial-filling affinity capillary electrophoresis. Anal Bioanal Chem 376(6):822–831

    Article  CAS  Google Scholar 

  50. Heintz J, Hernandez M, Gomez FA (1999) Use of a partial-filling technique in affinity capillary electrophoresis for determining binding constants of ligands to receptors. J Chromatogr A 840(2):261–268

    Article  CAS  Google Scholar 

  51. Lipponen K, Tähkä S, Kostiainen M, Riekkola M-L (2014) Stable neutral double hydrophilic block copolymer capillary coating for capillary electrophoretic separations. Electrophoresis 35:1106–1113. doi:10.1002/elps.201300425

Download references

Acknowledgments

Emilia Danilowich-Luebert is thanked for her help with the MST measurements. Financial support was provided by the Research Council for Natural Sciences and Engineering, the Academy of Finland (under grants 1133184 (K. L., G.C.-K and M.-L.R.) and 267497 / 273645 (M. K.)), the Academy of Finland under grant 257545 (M. J.), and the Swedish Research Council (VR) under grant 621-2012-3978 (J.S. and T.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja-Liisa Riekkola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipponen, K., Tähkä, S., Samuelsson, J. et al. Partial-filling affinity capillary electrophoresis and quartz crystal microbalance with adsorption energy distribution calculations in the study of biomolecular interactions with apolipoprotein E as interaction partner. Anal Bioanal Chem 406, 4137–4146 (2014). https://doi.org/10.1007/s00216-014-7821-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7821-9

Keywords

Navigation