Skip to main content
Log in

Fast and ergonomic extraction of adherent mammalian cells for NMR-based metabolomics studies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cellular metabolomics has become key to elucidate mechanistic aspects in various fields such as cancerology or pharmacology, and is rapidly becoming a standard phenotyping tool accessible to the broad biological community. Acquisition of reliable spectroscopic datasets, such as nuclear magnetic resonance (NMR) spectra, to characterize biological systems depends on the elaboration of robust methods for cellular metabolites extraction. Previous studies have addressed many issues raised by these protocols, however with little pondering on ergonomic and practical aspects of the methods that impact their scalability, reproducibility and hence their suitability to high-throughput studies or their use by non-metabolomics experts. Here, we optimize a fast and ergonomic protocol for extraction of metabolites from adherent mammalian cells for NMR metabolomics studies. The proposed extraction protocol, including cell washing, metabolism quenching and actual extraction of intracellular metabolites, was first optimized on HeLa cells. Efficiency of the protocol, in its globality and for the different individual steps, was assessed by NMR quantification of 27 metabolites from cellular extracts. We show that a single PBS wash provides a seemly compromise between contamination from growth medium and leakage of intracellular metabolites. In HeLa cells, extraction using pure methanol, without cell scraping, recovered a higher amount of intracellular metabolites than the reference methanol/water/chloroform method with cell scraping, with yields varying across metabolite classes. Optimized and reference protocols were further tested on eight cell lines of miscellaneous nature, and inter-operator reproducibility was demonstrated. Our results stress the need for tailored extraction protocols and show that fast protocols minimizing time-consuming steps, without compromising extraction yields, are suitable for high-throughput metabolomics studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang A, Sun H, Wang P, et al. Recent and potential developments of biofluid analyses in metabolomics. J Proteome. 2012;75:1079–88.

    Article  CAS  Google Scholar 

  2. Giskeødegård GF, Madssen TS, Euceda LR, et al. NMR-based metabolomics of biofluids in cancer. NMR Biomed. 2018;32:e3927.

  3. Zhang A, Sun H, Xu H, et al. Cell metabolomics. OMICS. 2013;17:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rinschen MM, Ivanisevic J, Giera M, et al. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20:353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aranibar N, Borys M, Mackin NA, et al. NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR. 2011;49:195–206.

    Article  CAS  PubMed  Google Scholar 

  6. Lefevre C, Panthu B, Naville D, et al. Metabolic phenotyping of adipose-derived stem cells reveals a unique signature and intrinsic differences between fat pads. Stem Cells Int. 2019;2019:1–16.

    Article  CAS  Google Scholar 

  7. Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21:392–402.

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. Nat Med. 2019;25:850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ortmayr K, Dubuis S, Zampieri M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat Commun. 2019;10:1841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. García-Cañaveras JC, Castell JV, Donato MT, et al. A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci Rep. 2016;6:27239.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hayton S, Maker GL, Mullaney I, et al. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci. 2017;74:4421–41.

    Article  CAS  PubMed  Google Scholar 

  12. Kapoore RV, Coyle R, Staton CA, et al. Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-231. Analyst. 2017;142:2038–49.

    Article  CAS  PubMed  Google Scholar 

  13. Dettmer K, Nürnberger N, Kaspar H, et al. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem. 2011;399:1127–39.

    Article  CAS  PubMed  Google Scholar 

  14. Danielsson APH, Moritz T, Mulder H, et al. Development and optimization of a metabolomic method for analysis of adherent cell cultures. Anal Biochem. 2010;404:30–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kapoore RV, Coyle R, Staton CA, et al. Cell line dependence of metabolite leakage in metabolome analyses of adherent normal and cancer cell lines. Metabolomics. 2015;11:1743–55.

    Article  CAS  Google Scholar 

  16. Hutschenreuther A, Kiontke A, Birkenmeier G, et al. Comparison of extraction conditions and normalization approaches for cellular metabolomics of adherent growing cells with GC-MS. Anal Methods. 2012;4:1953.

    Article  CAS  Google Scholar 

  17. Ser Z, Liu X, Tang NN, et al. Extraction parameters for metabolomics from cultured cells. Anal Biochem. 2015;475:22–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lorenz MA, Burant CF, Kennedy RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem. 2011;83:3406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. García-Cañaveras JC, López S, Castell JV, et al. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells. Anal Bioanal Chem. 2016;408:1217–30.

    Article  PubMed  CAS  Google Scholar 

  20. Bi H, Krausz KW, Manna SK, et al. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem. 2013;405:5279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peterson A, Walker A, Sloan E, et al. Optimized method for untargeted metabolomics analysis of MDA-MB-231 breast cancer cells. Metabolites. 2016;6:30.

    Article  PubMed Central  CAS  Google Scholar 

  22. Teng Q, Huang W, Collette TW, et al. A direct cell quenching method for cell-culture based metabolomics. Metabolomics. 2009;5:199–208.

    Article  CAS  Google Scholar 

  23. Martineau E, Tea I, Loaëc G, et al. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem. 2011;401:2133–42.

    Article  CAS  PubMed  Google Scholar 

  24. Le Belle JE, Harris NG, Williams SR, et al. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed. 2002;15:37–44.

    Article  PubMed  CAS  Google Scholar 

  25. Muschet C, Möller G, Prehn C, et al. Removing the bottlenecks of cell culture metabolomics: fast normalization procedure, correlation of metabolites to cell number, and impact of the cell harvesting method. Metabolomics. 2016;12:151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. de Koning W, van Dam K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem. 1992;204:118–23.

    Article  PubMed  Google Scholar 

  27. Villas-Bôas SG. Sampling and sample preparation. In: Villas-Bôas SG, Roessner U, Hansen MAE, et al, editors. Metabolome analysis: an introduction. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2006. pp. 39–82.

  28. Rizzi M, Baltes M, Theobald U, et al. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Math Model Biotechnol Bioeng. 1997;55:592–608.

    Article  CAS  Google Scholar 

  29. Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta Biomembr. 1615;2003:7–32.

    Google Scholar 

  30. Britten RJ, Mcclure FT. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962;26:292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kostidis S, Addie RD, Morreau H, et al. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: a tutorial. Anal Chim Acta. 2017;980:1–24.

    Article  CAS  PubMed  Google Scholar 

  32. Madji Hounoum B, Blasco H, Nadal-Desbarats L, et al. Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal Bioanal Chem. 2015;407:8861–72.

    Article  CAS  PubMed  Google Scholar 

  33. Matheus N, Hansen S, Rozet E, et al. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal. 2014;25:342–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zukunft S, Prehn C, Röhring C, et al. High-throughput extraction and quantification method for targeted metabolomics in murine tissues. Metabolomics. 2018;14:1–12.

    Article  CAS  Google Scholar 

  35. Beckonert O, Keun HC, Ebbels TMD, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.

    Article  CAS  PubMed  Google Scholar 

  36. Sellick CA, Hansen R, Stephens GM, et al. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 2011;6:1241–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cao B, Aa J, Wang G, et al. GC–TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization. Anal Bioanal Chem. 2011;400:2983–93.

    Article  CAS  PubMed  Google Scholar 

  38. León Z, García-Cañaveras JC, Donato MT, et al. Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis. 2013;34:2762–75.

    PubMed  Google Scholar 

  39. Merglen A, Theander S, Rubi B, et al. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–78.

    Article  CAS  PubMed  Google Scholar 

  40. Dingreville F, Panthu B, Thivolet C, et al. Differential effect of glucose on ER-mitochondria Ca2+ exchange participates in insulin secretion and glucotoxicity-mediated dysfunction of β-cells. Diabetes. 2019;68:1778–94.

    Article  CAS  PubMed  Google Scholar 

  41. Rieusset J, Fauconnier J, Paillard M, et al. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia. 2016;59:614–23.

    Article  CAS  PubMed  Google Scholar 

  42. Akoka S, Barantin L, Trierweiler M. Concentration measurement by proton NMR using the ERETIC method. Anal Chem. 1999;71:2554–7.

    Article  CAS  PubMed  Google Scholar 

  43. Lu W, Su X, Klein MS, et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem. 2017;86:277–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sauerschnig C, Doppler M, Bueschl C, et al. Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Metabolites. 2017;8:1.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédicte Elena-Herrmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mili, M., Panthu, B., Madec, AM. et al. Fast and ergonomic extraction of adherent mammalian cells for NMR-based metabolomics studies. Anal Bioanal Chem 412, 5453–5463 (2020). https://doi.org/10.1007/s00216-020-02764-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02764-9

Keywords

Navigation