Skip to main content
Log in

Stationary photocurrent generation from bacteriorhodopsin-loaded lipo-polymersomes in polyelectrolyte multilayer assembly on polyethersulfone membrane

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Vesicles constructed of either synthetic polymers alone (polymersomes) or a combination of polymers and lipids (lipo-polymersomes) demonstrate excellent long-term stability and ability to integrate membrane proteins. Applications using lipo-polymersomes with integrated membrane proteins require suitable supports to maintain protein functionality. Using lipo-polymersomes loaded with the light-driven proton pump bacteriorhodopsin (BR), we demonstrate here how the photocurrent is influenced by a chosen support. In our study, we deposited BR-loaded lipo-polymersomes in a cross-linked polyelectrolyte multilayer assembly either directly physisorbed on gold electrode microchips or cross-linked on an intermediary polyethersulfone (PES) membrane covalently grafted using a hydrogel cushion. In both cases, electrochemical impedance spectroscopic characterization demonstrated successful polyelectrolyte assembly with BR-loaded lipo-polymersomes. Light-induced proton pumping by BR-loaded lipo-polymersomes in the different support constructs was characterized by amperometric recording of the generated photocurrent. Application of the hydrogel/PES membrane support together with the polyelectrolyte assembly decreased the transient current response upon light activation of BR, while enhancing the generated stationary current to over 700 nA/cm2. On the other hand, the current response from BR-loaded lipo-polymersomes in a polyelectrolyte assembly without the hydrogel/PES membrane support was primarily a transient peak combined with a low-nanoampere-level stationary photocurrent. Hence, the obtained results demonstrated that by using a hydrogel/PES support it was feasible to monitor continuously light-induced proton flux in biomimetic applications of lipo-polymersomes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eytan GD. Use of liposomes for reconstitution of biological functions. Biochim Biophys Acta. 1982;694:185–202.

    CAS  PubMed  Google Scholar 

  2. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta. 1666;2004:105–17.

    Google Scholar 

  3. Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297:967–73.

    CAS  PubMed  Google Scholar 

  4. Taubert A, Napoli A, Meier W. Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes. Curr Opin Chem Biol. 2004;8:598–603.

    CAS  PubMed  Google Scholar 

  5. Nam J, Beales PA, Vanderlick TK. Giant phospholipid/block copolymer hybrid vesicles: mixing behavior and domain formation. Langmuir. 2011;27:1–6.

    PubMed  Google Scholar 

  6. Nam J, Vanderlick TK, Beales PA. Formation and dissolution of phospholipid domains with varying textures in hybrid lipo-polymersomes. Soft Matter. 2012;8:7982–8.

    CAS  Google Scholar 

  7. Nallani M, Andreasson-Ochsner M, Tan C-WD, Sinner E-K, Wisantoso Y, Geifman-Shochat S, et al. Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes. Biointerphases. 2011;6:153–7.

    CAS  PubMed  Google Scholar 

  8. May S, Andreasson-Ochsner M, Fu Z, Low YX, Tan D, de Hoog H-PM, et al. In vitro expressed GPCR inserted in polymersome membranes for ligand-binding studies. Angew Chem Int Ed. 2013;52:749–53.

    CAS  Google Scholar 

  9. Choi H-J, Montemagno CD. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 2005;5:2538–42.

    CAS  PubMed  Google Scholar 

  10. Chandrawati R, Caruso F. Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir. 2012;28:13798–807.

    CAS  PubMed  Google Scholar 

  11. Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8:323–41.

    CAS  PubMed  Google Scholar 

  12. Lee JS, Feijen JJ. Polymersomes for drug delivery: design, formation and characterization. Control Release. 2012;161:473–83.

    CAS  Google Scholar 

  13. Langowska K, Palivan CG, Meier W. Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun. 2013;49:128–30.

    CAS  Google Scholar 

  14. Ho D, Chu B, Lee H, Brooks EK, Kuo K, Montemagno CD. Fabrication of biomolecule–copolymer hybrid nanovesicles as energy conversion systems. Nanotechnol. 2005;16:3120–32.

    CAS  Google Scholar 

  15. Picart C. Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem. 2008;15:685–97.

    CAS  PubMed  Google Scholar 

  16. Kochan J, Wintgens T, Wong JE, Melin T. Polyelectrolyte-modified polyethersulfone ultrafiltration membranes for wastewater treatment applications. Desalin Water Treat. 2009;9:175–80.

    CAS  Google Scholar 

  17. Volodkin D, von Klitzing R, Moehwald H. Polyelectrolyte multilayers: towards single cell studies. Polymers. 2014;6:1502–27.

    Google Scholar 

  18. Ai H, Jones SA, Lvov YM. Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys. 2003;39:23–43.

    CAS  PubMed  Google Scholar 

  19. Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2006;18:3203–24.

    CAS  Google Scholar 

  20. Spricigo R, Dronov R, Lisdat F, Leimkühler S, Scheller FW, Wollenberger U. Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer. Anal Bioanal Chem. 2009;393:225–33.

    CAS  PubMed  Google Scholar 

  21. Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater. 2012;24:854–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. He J-A, Samuelson L, Li L, Kumar J, Tripathy SK. Photoelectric properties of oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly. J Phys Chem B. 1998;102:7067–72.

    CAS  Google Scholar 

  23. Saab M-B, Estephan E, Cloitre T, Legros R, Cuisinier FJG, Zimányi L, et al. Assembly of purple membranes on polyelectrolyte films. Langmuir. 2009;25:5159–67.

    CAS  PubMed  Google Scholar 

  24. Michel M, Vautier D, Voegel J-C, Schaaf P, Ball V. Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles. Langmuir. 2004;20:4835–9.

    CAS  PubMed  Google Scholar 

  25. Coustet M, Irigoyen J, Garcia TA, Murray RA, Romero G, Cortizo MS, et al. Layer-by-layer assembly of polymersomes and polyelectrolytes on planar surfaces and microsized colloidal particles. J Colloid Interface Sci. 2014;421:132–40.

    CAS  PubMed  Google Scholar 

  26. Childs RF, Mika AM, Pandey AK, McCrory C, Mouton S, Dickson JM. Nanofiltration using pore-filled membranes: effect of polyelectrolyte composition on performance. Sep Purif Technol. 2001;22–23:507–17.

    Google Scholar 

  27. Malaisamy R, Bruening ML. High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. Langmuir. 2005;21:10587–92.

    CAS  PubMed  Google Scholar 

  28. Ng LY, Mohammad AW, Ng CY. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Adv Colloid Interf Sci. 2013;197–198:85–107.

    Google Scholar 

  29. Sun G, Chung T-S, Jeyaseelan K, Armugam A. A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv. 2013;3:473–81.

    CAS  Google Scholar 

  30. Zhang W, Zhao Q, Yuan J. Porous polyelectrolytes: the interplay of charge and pores for new functionalities. Angew Chemie Int Ed. 2018;57:6754–73.

    CAS  Google Scholar 

  31. Oesterhelt D, Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973;70:2853–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Herrmann TR, Rayfield GW. The electrical response to light of bacteriorhodopsin in planar membranes. Biophys J. 1978;21:111–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bamberg E, Apell H-J, Dencher NA, Sperling W, Stieve H, Läuger P. Photocurrents generated by baeteriorhodopsin on planar bilayer membranes. Biophys Struct Mech. 1979;5:277–92.

    CAS  Google Scholar 

  34. Steinem C, Janshoff A, Höhn F, Sieber M, Galla HJ. Proton translocation across bacteriorhodopsin containing solid supported lipid bilayers. Chem Phys Lipids. 1997;89:141–52.

    CAS  Google Scholar 

  35. Horn C, Steinem C. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. Biophys J. 2005;89:1046–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitt EK, Nurnabi M, Bushby RJ, Steinem C. Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading. Soft Matter. 2008;4:250–3.

    CAS  Google Scholar 

  37. Brumfeld V, Miller IR. Effect of membrane potential on the conformation of bacteriorhodopsin reconstituted in lipid vesicles. Biophys J. 1988;54:747–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem. 2009;395:697–718.

    CAS  PubMed  Google Scholar 

  39. Lee H, Ho D, Kuo K, Montemagno CD. Vectorial insertion of bacteriorhodopsin for directed orientation assays in various polymeric biomembranes. Polymer. 2006;47:2935–41.

    CAS  Google Scholar 

  40. Palanco ME, Skovgaard N, Hansen JS, Berg-Sørensen K, Hélix-Nielsen C. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives. Bioinspir Biomim. 2018;13:016005.

    Google Scholar 

  41. Birge RR. Photophysics and molecular electronic applications of the rhodopsins. Annu Rev Phys Chem. 1990;41:683–733.

    CAS  PubMed  Google Scholar 

  42. Miyasaka T, Koyama K, Itoh I. Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science. 1992;255:342–4.

    CAS  PubMed  Google Scholar 

  43. Li R, Li CM, Bao H, Bao Q, Lee VS. Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Appl Phys Lett. 2007;91:223901.

    Google Scholar 

  44. Kim YJ, Neuzil P, Nam C-H, Engelhard M. Deposition of bacteriorhodopsin protein in a purple membrane form on nitrocellulose membranes for enhanced photoelectric response. Sensors. 2013;13:455–62.

    CAS  Google Scholar 

  45. Oesterhelt D, Stoeckenius W. Isolation of the cell membrane of halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–78.

    CAS  PubMed  Google Scholar 

  46. Mech-Dorosz A, Heiskanen A, Bäckström S, Perry M, Muhammad HB, Hélix-Nielsen C, et al. A reusable device for electrochemical applications of hydrogel supported black lipid membranes. Biomed Microdevices. 2015. https://doi.org/10.1007/s10544-015-9936-y.

  47. Heiskanen AR, Spégel CF, Kostesha N, Ruzgas T, Emnéus J. Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy. Langmuir. 2008;24:9066–73.

    CAS  PubMed  Google Scholar 

  48. Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo J, Bentien A, et al. Gold cleaning methods for electrochemical detection applications. Microelectron Eng. 2009;86:1282–5.

    CAS  Google Scholar 

  49. Han S, Lindholm-Sethson B. Electrochemistry at ultrathin polyelectrolyte films self-assembled at planar gold electrodes. Electrochim Acta. 1999;45:845–53.

    CAS  Google Scholar 

  50. Pardo-Yissar V, Katz E, Lioubashevski O, Willner I. Layered polyelectrolyte films on au electrodes: characterization of electron-transfer features at the charged polymer interface and application for selective redox reactions. Langmuir. 2001;17:1110–8.

    CAS  Google Scholar 

  51. Silva TH, Garcia-Morales V, Moura C, Manzanares JA, Silva F. Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified gold electrodes: influence of supporting electrolyte and temperature. Langmuir. 2005;21:7461–7.

    CAS  PubMed  Google Scholar 

  52. Justin G, Finley S, Rahman ARA, Guiseppi-Elie A. Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomed Microdevices. 2009;11:103–15.

    CAS  PubMed  Google Scholar 

  53. Yang L, Guiseppi-Wilson A, Guiseppi-Elie A. Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels. Biomed Microdevices. 2011;13:279–89.

    CAS  PubMed  Google Scholar 

  54. Kibrom A, Roskamp RF, Jonas U, Menges B, Knoll W, Paulsen H, et al. Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes. Soft Matter. 2011;7:237–46.

    CAS  Google Scholar 

  55. Randles JEB. Kinetics of rapid electrode reactions. Discuss Faraday Soc. 1947;1:11–9.

    Google Scholar 

  56. Tong W, Gao C, Möhwald H. Manipulating the properties of polyelectrolyte microcapsules by glutaraldehyde cross-linking. Chem Mater. 2005;17:4610–6.

    CAS  Google Scholar 

  57. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. Hoboken: Wiley; 2001.

    Google Scholar 

  58. Reviakine I, Brisson A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir. 2000;16:1806–15.

    CAS  Google Scholar 

  59. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17:471–84.

    CAS  PubMed  Google Scholar 

  60. Brug GJ, van den Eden ALG, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem. 1984;176:275–95.

    CAS  Google Scholar 

  61. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55:6218–27.

    CAS  Google Scholar 

  62. Nagel G, Möckel B, Büldt G, Bamberg E. Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Lett. 1995;377:263–6.

    CAS  PubMed  Google Scholar 

  63. Chen X-R, Huang Y-C, Yi H-P, Yang C-S. A unique light-driven proton transportation signal in halorhodopsin from Natronomonas Pharaonis. Biophys J. 2016;111:2600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Copenhagen Research School of Nanotechnology (CONT) in Denmark, and the cleantech company Aquaporin A/S in Copenhagen, Denmark. Nanna Bild from DTU Healthtech is acknowledged for the artwork in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arto Heiskanen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and/or animal participation

The studies presented in this article comprise neither human nor animal participation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mech-Dorosz, A., Bajraktari, N., Hélix-Nielsen, C. et al. Stationary photocurrent generation from bacteriorhodopsin-loaded lipo-polymersomes in polyelectrolyte multilayer assembly on polyethersulfone membrane. Anal Bioanal Chem 412, 6307–6318 (2020). https://doi.org/10.1007/s00216-020-02533-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02533-8

Keywords

Navigation