Skip to main content
Log in

Pyrene derivative-functionalized mesoporous silica–Cu2+ hybrid ensemble for fluorescence “turn-on” detection of H2S and logic gate application in aqueous media

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ensemble system PyH-SBA-15-Cu2+ was obtained via coordination interaction of pyrene derivative-functionalized mesoporous SBA-15 and Cu2+, and applied for the selective and sensitive detection of H2S over pH 6.0–12.0 in aqueous media. The sensing strategy was designed on the basis of the H2S-induced dissolution of Cu2+ from PyH-SBA-15-Cu2+. Cu2+ has good binding affinity to N atoms in PyH-SBA-15; therefore, the organic–inorganic hybrid ensemble PyH-SBA-15-Cu2+ was formed, which is nonfluorescent in aqueous solution because of the Cu2+-promoted emission quenching of PyH-SBA-15. The addition of H2S induces the dissolution of PyH-SBA-15-Cu2+ by the formation of stable CuS, thereby producing fluorescence revival of PyH-SBA-15. The correlative “turn-on” fluorescence signals of this ensemble system are linearly proportional to [H2S] in the concentration region of 0–1.0 × 10−4 M, showing a low detection limit of 3.7 × 10−7 M. Other common anions do not induce distinct fluorescence changes. When using the fluorescence intensity signal changes of PyH-SBA-15 as outputs and Cu2+ and S2− as inputs, PyH-SBA-15 can act as an XNOR logic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS. Chromogenic/fluorogenic ensemble chemosensing systems. Chem Rev. 2015;115:7893–943.

    Article  CAS  Google Scholar 

  2. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, et al. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev. 2018;47:8842–80.

    Article  CAS  Google Scholar 

  3. Xiong B, Peng L, Cao X, He Y, Yeung ES. Optical analysis of biological hydrogen sulphide: an overview of recent advancements. Analyst. 2015;140:1763–71.

    Article  CAS  Google Scholar 

  4. Kaushik R, Ghosh A, Jose DA. Recent progress in hydrogen sulphide (H2S) sensors by metal displacement approach. Coord Chem Rev. 2017;347:141–57.

    Article  CAS  Google Scholar 

  5. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46:7105–23.

    Article  CAS  Google Scholar 

  6. Zhou X, Lee S, Xu Z, Yoon J. Recent progress on the development of chemosensors for gases. Chem Rev. 2015;115:7944–8000.

    Article  CAS  Google Scholar 

  7. Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44:4596–618.

    Article  CAS  Google Scholar 

  8. Hu Y, Kang J, Zhou P, Han X, Sun J, Liu S, et al. A selective colorimetric and red-emitting fluorometric probe for sequential detection of Cu2+ and H2S. Sensors Actuators B Chem. 2018;255:3155–62.

    Article  CAS  Google Scholar 

  9. Busschaert N, Caltagirone C, Rossom WV, Gale PA. Applications of supramolecular anion recognition. Chem Rev. 2015;115:8038–155.

    Article  CAS  Google Scholar 

  10. Yun JY, Jo TG, Han J, Jang HJ, Lim MH, Kim C. A highly sensitive and selective fluorescent chemosensor for the sequential recognition of Zn2+ and S2− in living cells and aqueous media. Sensors Actuators B Chem. 2018;255:3108–16.

    Article  CAS  Google Scholar 

  11. Vengaian KM, Britto CD, Sekar K, Sivaraman G, Singaravadivel S. Phenothiazine-diaminomalenonitrile based colorimetric and fluorescence “turn-off-on” sensing of Hg2+ and S2−. Sensors Actuators B Chem. 2016;235:232–40.

    Article  CAS  Google Scholar 

  12. Li H. A regenerated “turn on” fluorescent probe for sulfide detection in live cells and read samples based on dihydroxyhemicyanine-Cu2+ dye. Anal Chim Acta. 2018;1010:69–75.

    Article  CAS  Google Scholar 

  13. Zhu Y, Cheng Z, Xiang Q, Zhu Y, Xu J. Rational design and synthesis of aldehyde-functionalized mesoporous SBA-15 for high-performance ammonia sensor. Sensors Actuators B Chem. 2018;256:888–95.

    Article  CAS  Google Scholar 

  14. Lashgari N, Badiei A, Ziarani GM, Faridbod F. Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water. Anal Bioanal Chem. 2017;409:3175–85.

    Article  CAS  Google Scholar 

  15. Zhao L, Li J, Sui D, Wang Y. Highly selective fluorescence chemosensors based on functionalized SBA-15 for detection of Ag+ in aqueous media. Sensors Actuators B Chem. 2017;242:1043–9.

    Article  CAS  Google Scholar 

  16. Afshani J, Badiei A, Lashgari N, Ziarani GM. A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN) in water mimicking XOR logic gate. RSC Adv. 2016;6:5957–64.

    Article  CAS  Google Scholar 

  17. Zhou H, Lv X, Zhang L, Gong A, Wu A, Liang Z, et al. A facile and in situ approach to fluorescent mesoporous silica and its applications in sensing and bioimaging. J Mater Chem C. 2014;2:9625–30.

    Article  CAS  Google Scholar 

  18. Calero P, Hecht M, Martínez-Máñez R, Sancenón F, Soto J, Vivancos JL, et al. Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA). Chem Commun. 2011;47:10599–601.

    Article  CAS  Google Scholar 

  19. Wang J, Guo W, Bae JH, Kim SH, Song J, Ha CS. Facile preparation of a multifunctional fluorescent nanosensor for chemical and biological applications. J Mater Chem. 2012;22:24681–9.

    Article  CAS  Google Scholar 

  20. Li Y, Yu X, Yu T. Eu3+ based mesoporous hybrid material with tunable multicolor emission modulated by fluoride ion: application for selective sensing toward fluoride ion. J Mater Chem C. 2017;5:5411–9.

    Article  CAS  Google Scholar 

  21. Sarkar S, Roy S, Sikdar A, Saha RN, Panja SS. A pyrene-based simple but highly selective fluorescence sensor for Cu2+ ions via a static excimer mechanism. Analyst. 2013;138:7119–26.

    Article  CAS  Google Scholar 

  22. Wang J, Liu HB, Tong Z, Ha CS. Fluorescent/luminescent detection of natural amino acids by organometallic systems. Coord Chem Rev. 2015;303:139–84.

    Article  CAS  Google Scholar 

  23. Gale PA, Caltagirone C. Anion sensing by small molecules and molecular ensembles. Chem Soc Rev. 2015;44:4212–27.

    Article  CAS  Google Scholar 

  24. Wang Y, Sun H, Hou L, Shang Z, Dong Z, Jin W. 1,4-Dihydroxyanthraquinone- Cu2+ ensemble probe for selective detection of sulfide anion in aqueous solution. Anal Methods. 2013;5:5493–500.

    Article  CAS  Google Scholar 

  25. Palanisamy S, Lee LY, Wang YL, Chen YJ, Chen CY, Wang YM. A water soluble and fast response fluorescent turn-on copper complex probe for H2S detection in zebra fish. Talanta. 2016;147:445–52.

    Article  CAS  Google Scholar 

  26. Zhang L, Sun J, Liu S, Cui X, Li W, Fang J. Aminoquinoline-based fluorescent probe for detection of Cu2+ and hydrogen sulfide. Inorg Chem Commun. 2013;35:311–4.

    Article  CAS  Google Scholar 

  27. Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology. 2010;42:539–48.

    Article  Google Scholar 

  28. Liu H, Zhang B, Tan C, Liu F, Cao J, Tan Y, et al. Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of F- and S2- by a simple fluorogenic benzimidazole-based chemosensor. Talanta. 2016;161:309–19.

    Article  CAS  Google Scholar 

  29. Dong Z, Le X, Zhou P, Dong C, Ma J. An off–on–off” fluorescent probe for the sequential detection of Zn2+ and hydrogen sulfide in aqueous solution. New J Chem. 2014;38:1802–1808.

    Article  CAS  Google Scholar 

  30. Jung JM, Lee JJ, Nam E, Lim MH, Kim C, Harrison RG. A zinc fluorescent sensor used to detect mercury (II) and hydrosulfide. Spectrochim Acta A. 2017;178:203–11.

    Article  CAS  Google Scholar 

  31. Ma F, Sun M, Zhang K, Yu H, Wang Z, Wang S. A turn-on fluorescent probe for selective and sensitive detection of hydrogen sulfide. Anal Chim Acta. 2015;879:104–10.

    Article  CAS  Google Scholar 

  32. Sen B, Mukherjee M, Pal S, Dhara K, Mandal SK, Khuda-Bukhsh AR, et al. A water soluble FRET-based ratiometric chemosensor for Hg(II) and S2- applicable in living cell staining. RSC Adv. 2014;4:14919–27.

    Article  CAS  Google Scholar 

  33. Tregubov Andrey A, Nikitin Petr I, Nikitin Maxim P. Advanced smart nanomaterials with integrated logic-gating and biocomputing: dawn of theranostic nanorobots. Chem Rev. 2018;118:10294–348.

    Article  CAS  Google Scholar 

  34. Szaciłowski K. Digital information processing in molecular systems. Chem Rev. 2008;108:3481–548.

    Article  Google Scholar 

  35. Xue M, Yang Y, Chi X, Yan X, Huang F. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem Rev. 2015;115:7398–501.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 21567002, 31560014, 21966006), the Natural Science Foundation of Guangxi Province (Grant No. 2018GXNSFAA050015), and the Hundred-Talent Program of Guangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HB., Liang, Y., Liang, J. et al. Pyrene derivative-functionalized mesoporous silica–Cu2+ hybrid ensemble for fluorescence “turn-on” detection of H2S and logic gate application in aqueous media. Anal Bioanal Chem 412, 905–913 (2020). https://doi.org/10.1007/s00216-019-02302-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02302-2

Keywords

Navigation