Skip to main content
Log in

An antipyrine based fluorescent probe for distinct detection of Al3+ and Zn2+ and its AIEE behaviour

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A simple antipyrine based fluorescent probe, 4-[(2-hydroxy-3-methoxy-benzylidene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (OVAP), has been successfully synthesized using a one-step condensation method. It exhibits dual sensing properties toward Al3+ and Zn2+ in the presence of other relevant metal ions and also displays novel aggregation induced emission enhancement (AIEE) characteristics in its aggregated/solid state. Aggregated OVAP microstructures with interesting morphologies have been synthesized using SDS as a morphology directing agent. Morphologies of the particles are characterized using optical microscopy. Photophysical properties of the as-synthesized OVAP hydrosol are studied using UV–Vis absorption, steady state and time resolved fluorescence spectroscopy. The ‘turn on’ luminescence property of OVAP is used for the selective detection of trace amounts of Al3+and Zn2+ and a significant turn on fluorescence enhancement over ~100-fold is triggered via chelationenhanced fluorescence (CHEF) through complex formation. The 1:1 stoichiometry of each sensor metal ion complex is observed from Job’s plot based on UV-Vis absorption titration. The LODs for Al3+ and Zn2+ are found to be 1.05 nM and 2.35 nM, respectively. Notably, the sensor, OVAP, is further demonstrated using a molecular INHIBIT logic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Wu, C. Y. Chen, Y. Q. Tian, S. H. Jang, Y. N. Y. Liu, R. R. Hu, B. Z. Tang, Y. T. Lee, C. T. Chen, W. C. Chen and A. K. Y. Jen, Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging, Adv. Funct. Mater., 2010, 29, 1413–1423.

    Article  CAS  Google Scholar 

  2. I. D. W. Samuel and G. A. Turnbull, Organic Semiconductor Lasers, Chem. Rev., 2007, 107, 1272–1295.

    Article  CAS  PubMed  Google Scholar 

  3. J. W. Chung, H. Yang, B. Singh, H. Moon, B. K. An, S. Y. Lee and S. Y. Park, Single-crystalline organic nanowires with large mobility and strong fluorescence emission: a conductive-AFM and space-charge-limited-current study, J. Mater. Chem., 2009, 19, 5920–5925.

    Article  CAS  Google Scholar 

  4. Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Aggregationinduced emission: phenomenon, mechanism and applications, Chem. Commun., 2009, 4332–4353.

  5. W. Chen, J. O. Bovin, A. G. Joly, S. P. Wang, F. H. Su and G. H. Li, Full-Color Emission from In2S3 and In2S3:Eu3+ Nanoparticles, J. Phys. Chem. B, 2004, 108, 11927–11934.

    Article  CAS  Google Scholar 

  6. A. Hagfeldt and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  7. J. Y. Kim and F. E. Osterloh, ZnO−CdSe Nanoparticle Clusters as Directional Photoemitters with Tunable Wavelength, J. Am. Chem. Soc., 2005, 127, 10152–10153.

    Article  CAS  PubMed  Google Scholar 

  8. A. N. Shipway, E. Katz and I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, ChemPhysChem, 2000, 1, 18–52.

    Article  CAS  PubMed  Google Scholar 

  9. S. W. Thomas, G. D. Joly and T. M. Swager, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers, Chem. Rev., 2007, 107, 1339–1386.

    Article  CAS  PubMed  Google Scholar 

  10. J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu and B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741.

  11. B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles, J. Am. Chem. Soc., 2002, 124, 14410.

    Article  CAS  PubMed  Google Scholar 

  12. G. Li, Y. Zhao, J. Li, J. Cao, J. Zhu, X. W. Sun and Q. Zhang, Synthesis, Characterization, Physical Properties, and OLED Application of Single BN-Fused Perylene Diimide, J. Org. Chem., 2015, 80, 196–203.

    Article  CAS  PubMed  Google Scholar 

  13. G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma and Z. Y. Wang, Band Gap Tunable, Donor−Acceptor−Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence, Chem. Mater., 2008, 20, 6208–6216.

    Article  CAS  Google Scholar 

  14. A. Hagfeldtt and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev., 1995, 95, 49–68.

    Article  Google Scholar 

  15. Z. Chen, J. Zhang, M. Song, J. Yin, G. A. Yu and S. H. Liu, A novel fluorene-based aggregation-induced emission (AIE)-active gold(I) complex with crystallization-induced emission enhancement (CIEE) and reversible mechanochromism characteristics, Chem. Commun., 2015, 51, 326–329.

    Article  CAS  Google Scholar 

  16. S. Maity, M. Shyamal, D. Das, A. Maity, S. Dey and A. Misra, Proton triggered emission and selective sensing of 2,4,6-trinitrophenol using a fluorescent hydrosol of 2-phenylquinoline, New J. Chem., 2018, 42, 1879–1891.

    Article  CAS  Google Scholar 

  17. M. Shyamal, P. Mazumdar, S. Maity, S. Samanta, G. P. Sahoo and A. Misra, Highly Selective Turn-On Fluorogenic Chemosensor for Robust Quantification of Zn (II) Based on Aggregation Induced Emission Enhancement Feature, ACS Sens., 2016, 1, 739–747.

    Article  CAS  Google Scholar 

  18. M. Shyamal, P. Mazumdar, S. Maity, G. P. Sahoo, G. Salgado-Moran and A. Misra, Pyrene Scaffold as Real-Time Fluorescent Turn-on Chemosensor for Selective Detection of Trace-Level Al(III) and Its Aggregation-Induced Emission Enhancement, J. Phys. Chem. A, 2016, 120, 210–220.

    Article  CAS  PubMed  Google Scholar 

  19. A. Tang, Z. Chen, D. Deng, G. Liu, Y. Tu and S. Pu, Aggregation-induced emission enhancement (AIEE)-active tetraphenylethene (TPE)-based chemosensor for Hg2+ with solvatochromism and cell imaging characteristics, RSC Adv., 2019, 9, 11865–11869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Tang, Y. Yin, Z. Chen, C. Fan, G. Liu and S. Pu, A multifunctional aggregation-induced emission (AIE)-active fluorescent chemosensor for detection of Zn2+ and Hg2+, Tetrahedron, 2019, 75, 130489.

    Article  CAS  Google Scholar 

  21. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev., 1997, 97, 1515–1566.

    Article  PubMed  Google Scholar 

  22. G. Aragay, J. Pons and A. Merkoc, Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection, Chem. Rev., 2011, 111, 3433–3458.

    Article  CAS  PubMed  Google Scholar 

  23. B. Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH Verlag GmbH, New York, 2001, p. 341.

  24. R. Alam, T. Mistri, P. Mondal, D. Das, S. K. Mandal, A. R. Khuda-Bukhsh and M. Ali, A novel copper(ii) complex as a nitric oxide turn-on fluorosensor: intracellular applications and DFT calculation, Dalton Trans., 2014, 43, 2566.

    Article  CAS  PubMed  Google Scholar 

  25. M. Mameli, M. C. Aragoni, M. Arca, C. Caltagirone, F. Demartin, G. Farruggia, G. de Filippo, F. A. Devillanova, A. Garau and F. Isaia, A Selective, Nontoxic, OFF–ON Fluorescent Molecular Sensor Based on 8-Hydroxyquinoline for Probing Cd2+ in Living Cells, Chem.Eur. J., 2010, 16, 919–930.

    Article  CAS  PubMed  Google Scholar 

  26. H. Ueyama, M. Takagi and S. Takenaka, A Novel Potassium Sensing in Aqueous Media with a Synthetic Oligonucleotide Derivative. Fluorescence Resonance Energy Transfer Associated with Guanine Quartet−Potassium Ion Complex Formation, J. Am. Chem. Soc., 2002, 124, 14286–14287.

    Article  CAS  PubMed  Google Scholar 

  27. P. D. Beer, Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species, Acc. Chem. Res., 1998, 31, 71.

    Article  CAS  Google Scholar 

  28. X. Zhang, L. Guo, F. Y. Wu and Y. B. Jiang, Development of Fluorescent Sensing of Anions under Excited-State Intermolecular Proton Transfer Signaling Mechanism, Org. Lett., 2003, 5, 2667.

    Article  CAS  PubMed  Google Scholar 

  29. B. Schazmann, N. Alhashimy and D. Diamond, Chloride Selective Calix[4]arene Optical Sensor Combining Urea Functionality with Pyrene Excimer Transduction, J. Am. Chem. Soc., 2006, 128, 8607.

    Article  CAS  PubMed  Google Scholar 

  30. Z. Xu, Y. Xiao, X. Qian, J. Cui and D. Cui, Ratiometric and Selective Fluorescent Sensor for CuII Based on Internal Charge Transfer (ICT), Org. Lett., 2005, 7, 889.

    Article  CAS  PubMed  Google Scholar 

  31. J. S. Wu, W. M. Liu, X. Q. Zhuang, F. Wang, P. F. Wang, S. L. Tao, X. H. Zhang, S. K. Wu and S. T. Lee, Fluorescence Turn On of Coumarin Derivatives by Metal Cations: A New Signaling Mechanism Based on C=N Isomerization, Org. Lett., 2007, 9, 33–36.

    Article  CAS  PubMed  Google Scholar 

  32. S. H. Kim, H. S. Choi, J. Kim, S. J. Lee, D. T. Quang and J. S. Kim, Novel Optical/Electrochemical Selective 1,2,3-Triazole Ring-Appended Chemosensor for the Al3+ Ion, Org. Lett., 2010, 12, 560–563.

    Article  CAS  PubMed  Google Scholar 

  33. W. H. Ding, W. Cao, X. J. Zheng, D. C. Fang, W. T. Wong and L. P. Jin, A Highly Selective Fluorescent Chemosensor for AlIII Ion and Fluorescent Species Formed in the Solution, Inorg. Chem., 2013, 52, 7320–7322.

    Article  CAS  PubMed  Google Scholar 

  34. S. Sen, T. Mukherjee, B. Chattopadhyay, A. Moirangthem, A. Basu, J. Marek and P. Chattopadhyay, A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging, Analyst, 2012, 137, 3975–3981.

    Article  CAS  PubMed  Google Scholar 

  35. L. Wang, W. Qin, X. Tang, W. Dou, W. Liu, Q. Teng and X. Yao, A selective, cell-permeable fluorescent probe for Al3+ in living cells, Org. Biomol. Chem., 2010, 8, 3751–3757.

    Article  CAS  PubMed  Google Scholar 

  36. A. Banerjee, A. Sahana, S. Das, S. Lohar, S. Guha, B. Sarkar, S. K. Mukhopadhyay, A. K. Mukherjee and D. Das, A naphthalene exciplex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range: experimental and computational studies, Analyst, 2012, 137, 2166–2175.

    Article  CAS  PubMed  Google Scholar 

  37. W. H. Ding, W. Cao, X. J. Zheng, D. C. Fang, W. T. Wong and L. P. Jin, A Highly Selective Fluorescent Chemosensor for AlIII Ion and Fluorescent Species Formed in the Solution, Inorg. Chem., 2013, 52, 7320–7322.

    Article  CAS  PubMed  Google Scholar 

  38. Z. C. Xu, J. Yoon and D. R. Spring, Fluorescent chemosensors for Zn2+, Chem. Soc. Rev., 2010, 39, 1996–2006.

    Article  Google Scholar 

  39. E. Kimura and T. Koike, Recent development of zinc-fluorophores, Chem. Soc. Rev., 1998, 27, 179–184.

  40. D. Maity and T. Govindaraju, A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media, Chem. Commun., 2012, 48, 1039–1041.

    Article  CAS  Google Scholar 

  41. M. Shellaiah, Y. H. Wu and H. C. Lin, Simple pyridyl-salicylimine-based fluorescence “turn-on” sensors for distinct detections of Zn2+, Al3+ and OH ions in mixed aqueous media, Analyst, 2013, 138, 2931–2942.

    Article  CAS  PubMed  Google Scholar 

  42. Z. Wang, S. Cui, S. Qiu and S. Pu, A dual-functional fluorescent sensor based on diarylethene for Zn2+ and Al3+ in different solvents, J. Photochem. Photobiol., A, 2019, 376, 185–195.

    Article  CAS  Google Scholar 

  43. S. Erdemir and O. Kocyigit, Dual recognition of Zn2+ and Al3+ ions by a novel probe containing two fluorophore through different signaling mechanisms, Sens. Actuators, B, 2018, 273, 56–61.

    Article  CAS  Google Scholar 

  44. A. Hazra, A. Roy, A. Mukherjee, G. P. Maiti and P. Roy, Remarkable difference in Al3+ and Zn2+ sensing properties of quinoline based isomers, Dalton Trans., 2018, 47, 13972–13989.

    Article  CAS  PubMed  Google Scholar 

  45. A. Roy, U. Shee, A. Mukherjee, S. K. Mandal and P. Roy, Rhodamine-Based Dual Chemosensor for Al3+ and Zn2+ Ions with Distinctly Separated Excitation and Emission Wavelengths, ACS Omega, 2019, 4, 6864–6875.

    Article  CAS  Google Scholar 

  46. S. Dey, A. Maity, M. Shyamal, D. Das, S. Maity, P. K. Giri, N. Mudi, S. S. Samanta, P. Hazraa and A. Misra, An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6-trinitrophenol (TNP) in the aggregated state, Photochem. Photobiol. Sci., 2019, 18, 2717–2729.

    Article  CAS  PubMed  Google Scholar 

  47. J. S. Wu, W. M. Liu, X. Q. Zhuang, F. Wang, P. F. Wang, S. L. Tao, X. H. Zhang, S. K. Wu and S. T. Lee, Fluorescence Turn On of Coumarin Derivatives by Metal Cations: A New Signaling Mechanism Based on C=N Isomerization, Org. Lett., 2007, 9, 33–36.

    Article  CAS  PubMed  Google Scholar 

  48. B. Anupama, M. Sunita, D. Shiva Leela, B. Ushaiah and C. Gyana Kumari, Synthesis, Spectral Characterization, DNA Binding Studies and Antimicrobial Activity of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) Complexes with 4-Aminoantipyrine Schiff Base of Ortho-Vanillin, J. Fluoresc., 2014, 24, 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  49. S. Sigroha, B. Narasimhan, P. Kumar, A. Khatkar, K. Ramasamy, V. Mani, R. K. Mishra and A. B. A. Majeed, Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones, Med. Chem. Res., 2012, 21, 3863–3875.

    Article  CAS  Google Scholar 

  50. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill, New York, 1969, pp. 235–237.

  51. FELIX 32 Operation Manual, Version 1.1, Photon Technology International, Inc., Birmingham, NJ, 2003.

  52. L. Wang, W. Qin, X. Tang, W. Dou, W. Liu, Q. Teng and X. Yao, A selective, cell-permeable fluorescent probe for Al3+ in living cells, Org. Biomol. Chem., 2010, 8, 3751–3757.

    Article  CAS  PubMed  Google Scholar 

  53. M. Maeder and A. D. Zuberbuehler, Nonlinear leastsquares fitting of multivariate absorption data, Anal. Chem., 1990, 62, 2220–2224.

    Article  CAS  Google Scholar 

  54. Y. S. Kim, G. J. Park, J. J. Lee, S. Y. Lee, S. Y. Lee and C. Kim, Multiple target chemosensor: a fluorescent sensor for Zn(II) and Al(III) and a chromogenic sensor for Fe(II) and Fe(III), RSC Adv., 2015, 5, 11229–11239.

    Article  CAS  Google Scholar 

  55. S. Goswami, S. Paul and A. Manna, A differentially selective chemosensor for a ratiometric response to Zn2+ and Al3+ in aqueous media with applications for molecular switches, RSC Adv., 2013, 3, 25079–25085.

    Article  CAS  Google Scholar 

  56. W. H. Ding, W. Cao, X. J. Zheng, W. J. Ding, J. P. Qiao and L. P. Jin, A tetrazole-based fluorescence “turn-on” sensor for Al(III) and Zn(II) ions and its application in bioimaging, Dalton Trans., 2014, 43, 6429–6435.

    Article  CAS  PubMed  Google Scholar 

  57. Y. Fu, Y. Tu, C. Fan, C. Zheng, G. Liu and S. Pu, A highly sensitive fluorescent sensor for Al3+ and Zn2+ based on a diarylethene salicylhydrazide Schiff base derivative and its bioimaging in live cells, New J. Chem., 2016, 40, 8579–8586.

    Article  CAS  Google Scholar 

  58. J. Sun, Z. Liu, Y. Wang, S. Xiao, M. Pei, X. Zhao and G. Zhang, A fluorescence chemosensor based on imidazo [1,2-a]quinoline for Al3+ and Zn2+ in respective solutions, RSC Adv., 2015, 5, 100873–100878.

    Article  CAS  Google Scholar 

  59. J. Qin, L. Fan, B. Wang, Z. Yang and T. Li, The design of a simple fluorescent chemosensor for Al3+/Zn2+via two different approaches, Anal. Methods, 2015, 7, 716–722.

    Article  CAS  Google Scholar 

  60. R. Alam, T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri and M. Ali, ESIPT blocked CHEF based differential dual sensor for Zn2+ and Al3+in a pseudo-aqueous medium with intracellular bio-imaging applications and computational studies, RSC Adv., 2016, 6, 1268–1278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Misra.

Additional information

Electronic supplementary information (ESI) available: 1H NMR study, 13C NMR study, FT-IR study, UV-Vis study, solid state emission study, Job’s plot, competitive analysis study, dissociation constant study, fluorescence life time table, LOD study, 1H NMR titration, and comparative table with the previously reported dual sensor. See DOI: 10.1039/c9pp00472f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Shyamal, M., Maity, R. et al. An antipyrine based fluorescent probe for distinct detection of Al3+ and Zn2+ and its AIEE behaviour. Photochem Photobiol Sci 19, 681–694 (2020). https://doi.org/10.1039/c9pp00472f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00472f

Navigation