Skip to main content
Log in

A Fluorescent Chemosensor Based on Functionalized Nanoporous Silica (SBA-15 SBA-IC-MN) for Detection of Hg2+ in Aqueous Media

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A highly ordered mesoporous silica SBA-15 was modified by indole-3-carbaldehyde followed by covalent grafting of malononitrile to prepare organic–inorganic hybrid nanomaterial (SBA-IC-MN). The characterization of the product presented the successful attachment of organic moieties at the surface of SBA-15 and the preservation of the original structure of SBA-15. The optical sensing ability of SBA-IC-MN was examined via different metal ions in H2O medium by fluorescence spectroscopy. SBA-IC-MN can be considered as highly selective and sensitive toward Hg2+ ions with a detection limit of 3.26 × 10–6. Further, excellent linearity was obtained between the fluorescence intensity of SBA-IC-MN and the concentration of Hg2+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dhakshinamoorthy, A.; Li, Z.; Garcia, H.: Catalylysis and photocatalysis by metal organic framework. Chem. Soc. Rev. 47, 8134–8172 (2018)

    Article  Google Scholar 

  2. Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H.: 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 31, 1900617 (2019)

    Article  Google Scholar 

  3. Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A.M.; Garcia, H.: Engineering UiO-66 metal organic framework for heterogeneous catalysis. Chem. Cat. Chem. 11, 899–92399 (2019)

    Google Scholar 

  4. Vojoudi, H.; Badiei, A.; Bahar, S.; Mohammadi Ziarani, G.; Faridbod, F.; Ganjali, M.: Post-modification of nanoporous silica type SBA-15 by bis (3-triethoxysilylpropyl) etrasulfide as an efficient adsorbent for arsenic removal. Powder Technol. 319, 271–278 (2017)

    Article  Google Scholar 

  5. Zhao, L.; Li, J.; Sui, D.; Wang, Y.: Highly selective fluorescence chemosensors based on functionalized SBA-15 for detection of Ag+ in aqueous media. Sens. Actuators 242, 1043–1049 (2017)

    Article  Google Scholar 

  6. Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A.: Decorated palladium nanoparticles on mesoporous organosilicate as an efficient catalyst for Sonogashira coupling reaction. J. Iran. Chem. Soc. 18, 589–601 (2021)

    Article  Google Scholar 

  7. Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A.: The synthesis of SBA-Pr-3AP@ Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction. Res. Chem. Intermed. 46, 4909–4922 (2020)

    Article  Google Scholar 

  8. Saleh, S.N.M.; Yusoff, M.H.M.; Abdullah, A.Z.: Caesium salt of tungstophosphoric acid supported on mesoporous SBA-15 catalyst for selective esterification of lauric acid with glycerol to monolaurin. Arab. J. Sci. Eng. 43, 5771–5783 (2018)

    Article  Google Scholar 

  9. Şimşek, V.: Investigation of catalytic sustainability of silica-based mesoporous acidic catalysts and ion-exchange resins in methyl acetate synthesis and characterizations of synthesized catalysts. Arab. J. Sci. Eng. 44, 5301–5310 (2019)

    Article  Google Scholar 

  10. Mohammadi Ziarani, G.; Gholamzadeh, P.; Badiei, A.; Fathi Vavsari, V.: The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3H nanocatalys. Res. Chem. Intermed. 44, 277 (2018)

    Article  Google Scholar 

  11. Hashemi, P.; Shamizadeh, M.; Badiei, A.; ZarabadiPoor, P.; Ghiasvand, A.R.; Yarahmadi, A.: Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction. Anal. Chim. Acta. 646, 1–5 (2009)

    Article  Google Scholar 

  12. Yang, P.; Gai, S.; Lin, J.: Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41, 3679–3698 (2012)

    Article  Google Scholar 

  13. Bahrami, Z.; Badiei, A.; Atyabi, F.: Surface functionalization of SBA-15 nanorods for anticancer drug delivery. Chem. Eng. Res. Des. 92, 1296–1303 (2014)

    Article  Google Scholar 

  14. Fathi Vavsari, V.; Mohammadi Ziarani, G.; Badiei, A.: The role of SBA-15 in drug delivery. RSC Adv. 5, 91686–91707 (2015)

    Article  Google Scholar 

  15. Dashtian, K.; Zare-Dorabei, R.: An easily organic–inorganic hybrid optical sensor based on dithizone impregnation on mesoporous SBA-15 for simultaneous detection and removal of Pb (II) ions from water samples: Response-surface methodology. Appl. Organomet. Chem. 31, e3842 (2017)

    Article  Google Scholar 

  16. Zhao, L.; Sui, D.; Wang, Y.: Fluorescence chemosensors based on functionalized SBA-15 for detection of Pb 2+ in aqueous media. RSC Adv. 5, 16611–16617 (2015)

    Article  Google Scholar 

  17. Dong, Z.; Tian, X.; Chen, Y.; Hou, J.; Ma, J.: Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg 2+ and its application as an INHIBIT logic devic. RSC Adv. 3, 2227–2233 (2013)

    Article  Google Scholar 

  18. Wang, Y.; Li, B.; Zhang, L.; Liu, L.; Zuo, Q.; Li, P.: A highly selective regenerable optical sensor for detection of mercury (II) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New J. Chem. 34, 1946–1953 (2010)

    Article  Google Scholar 

  19. Stein, A.; Melde, B.J.; Schroden, R.C.: Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mater. 12, 1403–1419 (2000)

    Article  Google Scholar 

  20. Lashgari, N.; Badiei, A.; Ziarani, G.M.; Faridbod, F.: Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg (II) in water. Anal. Bioanal. Chem. 409, 3175–3185 (2017)

    Article  Google Scholar 

  21. Karimi, M.; Badieia, A.; Ziarani, G.M.: Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15. Chem. Paper 70, 1431–1438 (2016)

    Article  Google Scholar 

  22. Wang, Y.; Li, B.; Zhang, L.; Song, H.: Multifunctional mesoporous nanocomposites with magnetic, optical, and sensing features: synthesis, characterization, and their oxygen-sensing performance. Langmuir 29, 1273–1279 (2013)

    Article  Google Scholar 

  23. Leng, B.; Jiang, J.; Tian, H.: A mesoporous silica supported Hg2+ chemodosimeter. AIChE J. 56, 2957–2964 (2010)

    Article  Google Scholar 

  24. De Silva, A.P.; Gunaratne, H.N.; Gunnlaugsson, T.; Huxley, A.J.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  Google Scholar 

  25. Aragay, G.; Pons, J.; Merkoçi, A.: Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111, 3433–3458 (2011)

    Article  Google Scholar 

  26. Quang, D.T.; Kim, J.S.: Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 110, 6280–6301 (2010)

    Article  Google Scholar 

  27. Bargossi, C.; Fiorini, M.C.; Montalti, M.; Prodi, L.; Zaccheroni, N.: Recent developments in transition metal ion detection by luminescent chemosensors. Coord. Chem. Rev. 208, 17–32 (2000)

    Article  Google Scholar 

  28. Benoit, J.; Fitzgerald, W.; Damman, A.: The biogeochemistry of an ombrotrophic bog: evaluation of use as an archive of atmospheric mercury deposition. Environ. Res. 78, 118–133 (1998)

    Article  Google Scholar 

  29. Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D.: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18, 149–175 (2003)

    Article  Google Scholar 

  30. Von Burg, R.: Inorganic mercury. Appl. Toxicol. 15, 483–493 (1995)

    Article  Google Scholar 

  31. Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.: Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 77, 165–172 (1998)

    Article  Google Scholar 

  32. Harada, M.: Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25, 1–24 (1995)

    Article  Google Scholar 

  33. Renzoni, A.; Zino, F.; Franchi, E.: Mercury levels along the food chain and risk for exposed populations. Environ. Res. 77, 68–72 (1998)

    Article  Google Scholar 

  34. Hoyle, I.; Handy, R.: Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways. Aquat. Toxicol. 72, 147–159 (2005)

    Article  Google Scholar 

  35. Li, Y.; Yang, L.-L.; Liu, K.; Zhao, F.-Y.; Liu, H.; Ruan, W.-J.: Two hexaazatriphenylene-pyrene based Hg2+ fluorescent chemosensors applicable for test paper detection. New J. Chem. 39, 2429–2432 (2015)

    Article  Google Scholar 

  36. Choi, J.-Y.; Kim, W.-T.; Yoon, J.-Y.: Rhodamine based fluorescent chemosensors for Hg2+ and its biological application. Bull. Korean Chem. Soc. 33, 2359–2364 (2012)

    Article  Google Scholar 

  37. Hu, J.; Li, J.; Qi, J.; Chen, J.: Highly selective and effective mercury (II) fluorescent sensors. New J. Chem. 39, 843–848 (2015)

    Article  Google Scholar 

  38. Gao, B.; Gong, W.-T.; Zhang, Q.-L.; Ye, J.-W.; Ning, G.-L.: A selective “turn-on” fluorescent sensor for Hg2+ based on “reactive” 7-hydroxycoumarin compound. Sens. Actuators B Chem. 162, 391–395 (2012)

    Article  Google Scholar 

  39. So, H.-S.; Rao, B.A.; Hwang, J.; Yesudas, K.; Son, Y.-A.: Synthesis of novel squaraine–bis (rhodamine-6G): A fluorescent chemosensor for the selective detection of Hg2+. Sens. Actuators B Chem. 202, 779–787 (2014)

    Article  Google Scholar 

  40. Shi, L.; Song, W.; Li, Y.; Li, D.-W.; Swanick, K.N.; Ding, Z.; Long, Y.-T.: A multi-channel sensor based on 8-hydroxyquinoline ferrocenoate for probing Hg (II) ion. Talanta 84, 900–904 (2011)

    Article  Google Scholar 

  41. Karimi, M.; Badiei, A.; Mohammadi Ziarani, G.: A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+ and I in aqueous media. RSC Adv. 5, 36530–36539 (2015)

    Article  Google Scholar 

  42. Karimi, M.; Badiei, A.; Lashgari, N.; Mohammadi Ziarani, G.: A chromotropic acid modified SBA-15 as a highly sensitive fluorescent probe for determination of Fe3+ and I ions in water. J. Porous Mater. 25, 137–146 (2018)

    Article  Google Scholar 

  43. Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G.: Selective detection of Hg2+ ion in aqueous medium with the use of 3-(pyrimidin-2-ylimino) indolin-2-one-functionalized SBA-15. Appl. Organomet. Chem. 32, e3991 (2018)

    Article  Google Scholar 

  44. Afshani, J.; Badiei, A.; Karimi, M.; Lashgari, N.; Mohammadi Ziarani, G.: A Schiff base-grafted nanoporous silica material as a reversible optical probe for Hg2+ ion in water. Appl. Organomet. Chem. 31, e3856 (2017)

    Article  Google Scholar 

  45. Karimi, M.; Badiei, A.; Ziarani, G.M.: A click-derived dual organic-inorganic hybrid optical sensor based on SBA-15 for selective recognition of Zn2+ and CN in water. Inorg. Chim. Acta 450, 346–352 (2016)

    Article  Google Scholar 

  46. Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G.: A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J. Phys. Chem. Solids 103, 238–248 (2017)

    Article  Google Scholar 

  47. Afshani, J.; Badiei, A.; Lashgari, N.; Ziarani, G.M.: A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN) in water mimicking XOR logic gate. RSC Adv. 6, 5957–5964 (2016)

    Article  Google Scholar 

  48. Newkirk, A.E.: Thermogravimetric measurements. Anal. Chem. 32, 1558–1563 (1960)

    Article  Google Scholar 

  49. Kaushik, R.; Singh, A.; Ghosh, A.: Selective colorimetric sensor for the detection of Hg2+ and H2S in aqueous medium and waste water samples. Chem. Sel 1, 1533–1540 (2016)

    Google Scholar 

  50. Su, Q.; Niu, Q.; Sun, T.; Li, T.: A simple fluorescence turn-on chemosensor based on Schiff-base for Hg2+-selective detection. Tetrahedron Lett. 57, 4297–4301 (2016)

    Article  Google Scholar 

  51. Jiménez-Sánchez, A.; Farfán, N.; Santillan, R.: A reversible fluorescent–colorimetric Schiff base sensor for Hg2+ ion. Tetrahedron Lett. 54, 5279–5283 (2013)

    Article  Google Scholar 

  52. Weng, J.; Mei, Q.; Ling, Q.; Fan, Q.; Huang, W.: A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. Tetrahedron 68, 3129–3134 (2012)

    Article  Google Scholar 

  53. Wu, D.; Wang, Z.; Wu, G.; Huang, W.: Chemosensory rhodamine-immobilized mesoporous silica material for extracting mercury ion in water with improved sensitivity. Mater. Chem. Phys. 137, 428–433 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the research support council of the Alzahra University and the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghodsi Mohammadi Ziarani or Fatemeh Mohajer.

Ethics declarations

Competing interest

The authors declare that there is no declaration of competing interest in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Ziarani, G., Ebrahimi, Z., Mohajer, F. et al. A Fluorescent Chemosensor Based on Functionalized Nanoporous Silica (SBA-15 SBA-IC-MN) for Detection of Hg2+ in Aqueous Media. Arab J Sci Eng 47, 397–406 (2022). https://doi.org/10.1007/s13369-021-05518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05518-6

Keywords

Navigation