Analytical and Bioanalytical Chemistry

, Volume 410, Issue 7, pp 1911–1921 | Cite as

Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS)

Research Paper

Abstract

Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical.

Graphical abstract

Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings

Keywords

Laser-ablation electrospray ionization Imaging Mass spectrometry Cicada wings Spatial resolution Insect hydrocarbons 

Notes

Acknowledgements

Scanning electron microscopy was carried out at the Beckman Institute, University of Illinois.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_855_MOESM1_ESM.pdf (390 kb)
ESM 1 (PDF 794 kb).

References

  1. 1.
    Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci. 2011;56(1):1–108.CrossRefGoogle Scholar
  2. 2.
    Dooley C, Taylor D. Self-healing materials: what can nature teach us? Fatigue Fract Eng Mater Struct. 2017;40(5):655–69.CrossRefGoogle Scholar
  3. 3.
    Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater. 2007;19(17):2213–7.CrossRefGoogle Scholar
  4. 4.
    Chapman J, Hellio C, Sullivan T, Brown R, Russell S, Kiterringham E, et al. Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeter Biodegr. 2014;86:6–13.CrossRefGoogle Scholar
  5. 5.
    Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, et al. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small. 2012;8(16):2489–94.CrossRefGoogle Scholar
  6. 6.
    Hasan J, Webb HK, Truong VK, Pogodin S, Baulin VA, Watson GS, et al. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol. 2013;97(20):9257–62.CrossRefGoogle Scholar
  7. 7.
    Oh J, Dana CE, Hong S, Román JK, Jo KD, Hong JW, et al. Exploring the role of habitat on the wettability of cicada wings. ACS Appl Mater Interfaces. 2017;9(32):27173–84.CrossRefGoogle Scholar
  8. 8.
    Ivanova EP, Nguyen SH, Webb HK, Hasan J, Truong Khanh V, Lamb RN, et al. Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle. PLoS One. 2013;8(7):e67893.CrossRefGoogle Scholar
  9. 9.
    Trusheva B, Trunkova D, Bankova V. Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J Springer International Publishing. 2007;1(1):13.CrossRefGoogle Scholar
  10. 10.
    Liu J, Sandahl M, Sjöberg PJR, Turner C. Pressurised hot water extraction in continuous flow mode for thermolabile compounds: extraction of polyphenols in red onions. Anal Bioanal Chem. Springer Berlin Heidelberg. 2014;406(2):441–5.CrossRefGoogle Scholar
  11. 11.
    Papaioannou E, Roukas T, Liakopoulou-Kyriakides M. Effect of biomass pre-treatment and solvent extraction on beta-carotene and lycopene recovery from Blakeslea trispora cells. Prep Biochem Biotechnol. Taylor & Francis Group. 2008;38(3):246–56.CrossRefGoogle Scholar
  12. 12.
    Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res Am Soc Biochem Mol Biol. 2013;54(7):1812–24.Google Scholar
  13. 13.
    Smelcerovic A, Spiteller M, Zuehlke S. Comparison of methods for the exhaustive extraction of hypericins, flavonoids, and hyperforin from Hypericum perforatum L. J Agric Food Chem. 2006;54(7):2750–3.CrossRefGoogle Scholar
  14. 14.
    Vickerman JC. Molecular imaging and depth profiling by mass spectrometry-SIMS, MALDI or DESI? Analyst. 2011;136(11):2199–217.CrossRefGoogle Scholar
  15. 15.
    Seeley EH, Caprioli RM. 3D imaging by mass spectrometry: a new frontier. Anal Chem. 2012;84(5):2105–10.CrossRefGoogle Scholar
  16. 16.
    Watrous JD, Alexandrov T, Dorrestein PC. The evolving field of imaging mass spectrometry and its impact on future biological research. J Mass Spectrom. 2011;46(2):209–22.CrossRefGoogle Scholar
  17. 17.
    Gode D, Volmer DA. Lipid imaging by mass spectrometry—a review. Analyst. 2013;138(5):1289–315.CrossRefGoogle Scholar
  18. 18.
    Kertesz V, Van Berkel GJ. Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. John Wiley & Sons Ltd. 2008;22(17):2639–44.CrossRefGoogle Scholar
  19. 19.
    Pasilis SP, Kertesz V, Van Berkel GJ. Surface scanning analysis of planar arrays of analytes with desorption electrospray ionization-mass spectrometry. Anal Chem. 2007;79(15):5956–62.CrossRefGoogle Scholar
  20. 20.
    Gross JH. Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem. Springer Berlin Heidelberg. 2014;406(1):63–80.CrossRefGoogle Scholar
  21. 21.
    Wang H, Sun W, Zhang J, Yang X, Lin T, Ding L. Desorption corona beam ionization source for mass spectrometry. Analyst. 2010;135(4):688–95.CrossRefGoogle Scholar
  22. 22.
    Huang M-Z, Jhang S-S, Shiea J. Electrospray laser desorption ionization (ELDI) mass spectrometry for molecular imaging of small molecules on tissues. Methods Mol Biol. New York, NY: Springer New York. 2015;1203(Chapter 11):107–16.CrossRefGoogle Scholar
  23. 23.
    Hiraoka K, Usmanov DT, Chen LC, Ninomiya S, Mandal MK, Saha S. Probe electrospray ionization (PESI) mass spectrometry with discontinuous atmospheric pressure interface (DAPI). Eur J Mass Spectrom (Chichester). SAGE PublicationsSage UK: London, England. 2015;21(3):327–34.CrossRefGoogle Scholar
  24. 24.
    Pan N, Rao W, Kothapalli NR, Liu R, Burgett AWG, Yang Z. The single-probe: a miniaturized multifunctional device for single cell mass spectrometry analysis. Anal Chem Am Chem Soc. 2014;86(19):9376–80.CrossRefGoogle Scholar
  25. 25.
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2012;84(1):141–8.CrossRefGoogle Scholar
  26. 26.
    Van Berkel GJ, Kertesz V, Koeplinger KA, Vavrek M, Kong A-NT. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom. John Wiley & Sons Ltd. 2008;43(4):500–8.CrossRefGoogle Scholar
  27. 27.
    Peng W-P, Yang Y-C, Kang M-W, Tzeng Y-K, Nie Z, Chang H-C, et al. Laser-induced acoustic desorption mass spectrometry of single bioparticles. Angew Chem Int Ed WILEY-VCH Verlag. 2006;45(9):1423–6.CrossRefGoogle Scholar
  28. 28.
    Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79(21):8098–106.CrossRefGoogle Scholar
  29. 29.
    Nemes P, Vertes A. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Anal Chem TrAC. 2012;34:22–34.CrossRefGoogle Scholar
  30. 30.
    Huang M-Z, Yuan C-H, Cheng S-C, Cho Y-T, Shiea J. Ambient ionization mass spectrometry. Annu Rev Anal Chem. 2010;3(1):43–65.CrossRefGoogle Scholar
  31. 31.
    Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32(3):218–43.CrossRefGoogle Scholar
  32. 32.
    Huang M-Z, Cheng S-C, Jhang S-S, Chou C-C, Cheng C-N, Shiea J, et al. Ambient molecular imaging of dry fungus surface by electrospray laser desorption ionization mass spectrometry. Int J Mass Spectrom. 2012;325–327:172–82.CrossRefGoogle Scholar
  33. 33.
    Chen LC, Yoshimura K, Yu Z, Iwata R, Ito H, Suzuki H, et al. Ambient imaging mass spectrometry by electrospray ionization using solid needle as sampling probe. J Mass Spectrom. 2009;44(10):1469–77.CrossRefGoogle Scholar
  34. 34.
    Shrestha B, Sripadi P, Walsh CM, Razunguzwa TT, Powell MJ, Kehn-Hall K, et al. Rapid, non-targeted discovery of biochemical transformation and biomarker candidates in oncovirus-infected cell lines using LAESI mass spectrometry. Chem Commun. 2012;48(31):3700–2.CrossRefGoogle Scholar
  35. 35.
    Berkenkamp S, Karas M, Hillenkamp F. Ice as a matrix for IR-matrix-assisted laser desorption/ionization: mass spectra from a protein single crystal. Proc Natl Acad Sci U S A. 1996;93(14):7003–7.CrossRefGoogle Scholar
  36. 36.
    Bartels B, Svatoš A. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. Front Plant Sci. 2015;6:471.CrossRefGoogle Scholar
  37. 37.
    Cabral EC, Mirabelli MF, Perez CJ, Ifa DR. Blotting assisted by heating and solvent extraction for DESI-MS imaging. J Am Soc Mass Spectrom. 2013;24(6):956–65.CrossRefGoogle Scholar
  38. 38.
    Shrestha B, Nemes P, Nazarian J, Hathout Y, Hoffman EP, Vertes A. Direct analysis of lipids and small metabolites in mouse brain tissue by AP IR-MALDI and reactive LAESI mass spectrometry. Analyst. 2010;135(4):751–8.CrossRefGoogle Scholar
  39. 39.
    Müller WEG, Wang S, Neufurth M, Kokkinopoulou M, Feng Q, Schröder HC, et al. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP. J Cell Sci. 2017;130(16):2747–56.CrossRefGoogle Scholar
  40. 40.
    Lockey KH. Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol B Biochem Mol Biol. 1988;89(4):595–645.CrossRefGoogle Scholar
  41. 41.
    Kind T, Fiehn O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics BioMed Central. 2007;8(1):105.CrossRefGoogle Scholar
  42. 42.
    Bae E, Yeo IJ, Jeong B, Shin Y, Shin K-H, Kim S. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS. Anal Chem. 2011;83(11):4193–9.CrossRefGoogle Scholar
  43. 43.
    Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51.CrossRefGoogle Scholar
  44. 44.
    Li H, Smith BK, Márk L, Nemes P, Nazarian J, Vertes A. Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Int J Mass Spectrom. 2015;377:681–9.CrossRefGoogle Scholar
  45. 45.
    Shrestha B, Vertes A. Situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2009;81(20):8265–71.CrossRefGoogle Scholar
  46. 46.
    Nemes P, Barton AA, Vertes A. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2009;81(16):6668–75.CrossRefGoogle Scholar
  47. 47.
    Nemes P, Woods AS, Vertes A. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2010;82(3):982–8.CrossRefGoogle Scholar
  48. 48.
    Miljkovic N, Wang EN. Condensation heat transfer on superhydrophobic surfaces. MRS Bull. 2013;38(05):397–406.CrossRefGoogle Scholar
  49. 49.
    Enright R, Miljkovic N, Al-Obeidi A, Thompson CV, Wang EN. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir. 2012;28(40):14424–32.CrossRefGoogle Scholar
  50. 50.
    Koch K, Ensikat H-J. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron. 2008;39(7):759–72.CrossRefGoogle Scholar
  51. 51.
    Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol. 2008;59(1):683–707.CrossRefGoogle Scholar
  52. 52.
    Buckner JS. Structure and analysis of insect hydrocarbons. Cambridge: Cambridge University Press; 2009.Google Scholar
  53. 53.
    van Maarseveen C, Jetter R. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Phytochemistry. 2009;70(7):899–906.CrossRefGoogle Scholar
  54. 54.
    Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem Hindawi. 2012;2012(8):282574–40.Google Scholar
  55. 55.
    Kreuz P, Arnold W, Kesel AB. Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface. Ann Biomed Eng. 2001;29(12):1054–8.CrossRefGoogle Scholar
  56. 56.
    Knowles JR. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49(1):877–919.CrossRefGoogle Scholar
  57. 57.
    Frankiewicz C, Attinger D. Texture and wettability of metallic lotus leaves. Nano. 2016;8(7):3982–90.Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Jessica K. Román
    • 1
  • Callee M. Walsh
    • 2
  • Junho Oh
    • 3
  • Catherine E. Dana
    • 4
  • Sungmin Hong
    • 1
  • Kyoo D. Jo
    • 1
  • Marianne Alleyne
    • 4
  • Nenad Miljkovic
    • 3
    • 5
    • 6
  • Donald M. Cropek
    • 1
  1. 1.U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL)ChampaignUSA
  2. 2.Protea Biosciences Inc.MorgantownUSA
  3. 3.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.International Institute for Carbon Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan

Personalised recommendations