Skip to main content
Log in

Determination of proflavine in rat whole blood without sample pretreatment by laser desorption postionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel pretreatment-free method involving laser desorption postionization (LDPI) coupled with time-of-flight mass spectrometry (MS) was developed for the monitoring of proflavine level in rat whole blood. It comprises a protocol for dosing via intravenous administration and collection of whole blood, followed by direct LDPI-MS analysis without any sample pretreatment. An intense ion signal at m/z 209 was observed from whole blood without any interference signals, except some background signals below m/z 100. The calibration curve was established with use of 9-phenylacridine as the internal standard for proflavine determination from the plotting of the peak ratios of proflavine to the internal standard, with a correlation coefficient (R 2) greater than 0.99. The limit of detection was estimated to be 0.48 pmol/mm2 and the quantification range was 0.5-16.5 μg/mL for proflavine. In addition, only a minimal matrix effect was observed, as expected from considerations of the desorption and ionization mechanism. Interday and intraday accuracy and precision were calculated to be within 13% and 82–114%, respectively. Estimated concentrations of proflavine residue in whole blood were also successfully obtained at selected time points after dosing. The proposed method is simple, low cost, and sensitive, and should be seen as a complementary method for monitoring drug levels in blood.

Monitoring proflavine levels in rat whole blood at different time points using laser desorption postionization mass spectrometry (LDPI-MS)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goutelle S, Roux S, Gagnieu M-C, Valour F, Lustig S, Ader F, et al. Pharmacokinetic variability of daptomycin during prolonged therapy for bone and joint infections. Antimicrob Agents Chemother. 2016;60:3148–51.

    Article  CAS  Google Scholar 

  2. Burns ML, Baftiu A, Opdal MS, Johannessen SI, Landmark CJ. Therapeutic drug monitoring of clobazam and its metabolite—impact of age and comedication on pharmacokinetic variability. Ther Drug Monit. 2016;38:350–7.

    Article  CAS  Google Scholar 

  3. Rostami-Hodjegan A. Variability in pharmacokinetics and its sources: what it takes to get to precision dosing? Drug Metab Rev. 2016;48:9.

    Google Scholar 

  4. Reyner EL, Dickmann LJ, Lum B, Budha NR, Morcos P, Phipps A, et al. Intrinsic and extrinsic determinants of pharmacokinetic (pk) variability of cancer therapeutics. Clin Pharmacol Ther. 2016;99:S27–S7.

    Google Scholar 

  5. Ali I, Kulsum U, AL-Othman ZA, Saleem K. Analyses of nonsteroidal anti-inflammatory drugs in human plasma using dispersive nano solid-phase extraction and high-performance liquid chromatography. Chromatographia. 2016;79:145–57.

    Article  CAS  Google Scholar 

  6. Feng MX, Wang GN, Yang K, Liu HZ, Wang JP. Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control. 2016;69:171–6.

    Article  CAS  Google Scholar 

  7. Li J, Liu DD, Ke Y, Guo F, Ding XM, Wang SL, et al. Determination and pharmacokinetic study of the novel anti-tumor candidate drug DG-7 in rat plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2014;960:14–8. doi:10.1016/j.jchromb.2014.04.010.

    Article  CAS  Google Scholar 

  8. Kim SJ, Koo TS, Ha DJ, Baek M, Lee SK, Shin DS, et al. Liquid chromatography-tandem mass spectrometry for quantification of lacosamide, an antiepileptic drug, in rat plasma and its application to pharmacokinetic study. Biomed Chromatogr. 2012;26:371–6. doi:10.1002/bmc.1668.

    CAS  Google Scholar 

  9. Scheidweiler KB, Newmeyer MN, Barnes AJ, Huestis MA. Quantification of cannabinoids and their free and glucuronide metabolites in whole blood by disposable pipette extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2016;1453:34–42. doi:10.1016/j.chroma.2016.05.024.

    Article  CAS  Google Scholar 

  10. Beaudry F, Guénette SA, Winterborn A, Marier J-F, Vachon P. Development of a rapid and sensitive LC–ESI/MS/MS assay for the quantification of propofol using a simple off-line dansyl chloride derivatization reaction to enhance signal intensity. J Pharm Biomed. 2005;39:411–7.

    Article  CAS  Google Scholar 

  11. Escobar J, Sanchez-Illana A, Kuligowski J, Torres-Cuevas I, Solberg R, Garberg HT, et al. Development of a reliable method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry to measure thiol-associated oxidative stress in whole blood samples. J Pharm Biomed. 2016;123:104–12. doi:10.1016/j.jpba.2016.02.007.

    Article  CAS  Google Scholar 

  12. Bunch DR, Wang S. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays. Anal Bioanal Chem. 2013;405:3021–33. doi:10.1007/s00216-013-6761-0.

    Article  CAS  Google Scholar 

  13. Shaaban H, Gorecki T. Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta. 2015;132:739–52. doi:10.1016/j.talanta.2014.09.050.

    Article  CAS  Google Scholar 

  14. Gasper GL, Takahashi LK, Zhou J, Ahmed M, Moore JF, Hanley L. Laser Desorption postionization mass spectrometry of antibiotic-treated bacterial biofilms using tunable vacuum ultraviolet radiation. Anal Chem. 2010;82:7472–8. doi:10.1021/ac101667q.

    Article  CAS  Google Scholar 

  15. Orea J, Montero C, Jiménez J, González UA. Analysis of trans-resveratrol by laser desorption coupled with resonant ionization spectrometry. Application to trans-resveratrol content in vine leaves and grape skin. Anal Chem. 2001;73:5921–9.

    Article  CAS  Google Scholar 

  16. Emmenegger C, Kalberer M, Morrical B, Zenobi R. Quantitative analysis of polycyclic aromatic hydrocarbons in water in the low-nanogram per liter range with two-step laser mass spectrometry. Anal Chem. 2003;75:4508–13. doi:10.1021/ac0340197.

    Article  CAS  Google Scholar 

  17. Hahn JH, Zenobi R, Zare RN. Subfemtomole quantitation of molecular adsorbates by two-step laser mass spectrometry. J Am Chem Soc. 1987;109:2842–3.

    Article  CAS  Google Scholar 

  18. Hanley L, Zimmermann R. Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal Chem. 2009;81:4174–82.

    Article  CAS  Google Scholar 

  19. Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R. Laser mass spectrometry as on-line sensor for industrial process analysis: process control of coffee roasting. Anal Chem. 2004;76:1386–402.

    Article  CAS  Google Scholar 

  20. Chen Y, Sullards MC, Hoang TT, May SW, Orlando TM. Analysis of organoselenium and organic acid metabolites by laser desorption single photon ionization mass spectrometry. Anal Chem. 2006;78:8386–94.

    Article  CAS  Google Scholar 

  21. Bhardwaj C, Moore JF, Cui Y, Gasper GL, Bernstein HC, Carlson RP, et al. Laser desorption VUV postionization MS imaging of a cocultured biofilm. Anal Bioanal Chem. 2013;405:6969–77.

    Article  CAS  Google Scholar 

  22. Yang Q, Hu Y, Wei Y, Wang H, Guan J, Zhang Y, et al. In situ detection of methylene blue in tissues by laser desorption vacuum ultraviolet single photon postionization mass spectrometry. Int J Mass Spectrom. 2013;353:12–8. doi:10.1016/j.ijms.2013.07.007.

    Article  CAS  Google Scholar 

  23. Nash SC, Ketcham AS, Smith RR. Effect of local irrigation with proflavine hemisulfate on wounds seeded with tumor cells: an experimental study. Ann Surg. 1962;155:465.

    Article  CAS  Google Scholar 

  24. Denny WA. Acridine derivatives as chemotherapeutic agents. Curr Med Chem. 2002;9:1655–65.

    Article  CAS  Google Scholar 

  25. Denny WA. Chemotherapeutic effects of acridine derivatives. Med Chem Rev-Online. 2004;1:257–66.

    Article  CAS  Google Scholar 

  26. Charmantray F, Martelli A. Interest of acridine derivatives in the anticancer chemotherapy. Curr Pharm Design. 2001;7:1703–24.

    Article  Google Scholar 

  27. Kawada H, Inanobe A, Kurachi Y. Isolation of proflavine as a blocker of G protein-gated inward rectifier potassium channels by a cell growth-based screening system. Neuropharmacology. 2016;109:18–28. doi:10.1016/j.neuropharm.2016.05.016.

    Article  CAS  Google Scholar 

  28. Liu P, Hu Y, Zhu G, Yang Q, Tao Y. Direct and fast detection of chlorothalonil in soil samples using laser desorption VUV single photon post-ionization mass spectrometry. Anal Methods. 2015;7:6890–5. doi:10.1039/c5ay01097g.

    Article  CAS  Google Scholar 

  29. Liu P, Hu Y, Chen J, Yang Q. Direct detection of the anti-cancer drug 9-phenylacridine in tissues by graphite rod laser desorption vacuum-ultraviolet post-ionization mass spectrometry. Rapid Comm Mass Spectrom. 2015;29:1328–34. doi:10.1002/rcm.7226.

    Article  CAS  Google Scholar 

  30. Ferge T, Mühlberger F, Zimmermann R. Application of infrared laser desorption vacuum-UV single-photon ionization mass spectrometry for analysis of organic compounds from particulate matter filter samples. Anal Chem. 2005;77:4528–38.

    Article  CAS  Google Scholar 

  31. Herring J, Aleksandrov A, Orlando TM. Stimulated desorption of cations from pristine and acidic low-temperature water ice surfaces. Phys Rev Lett. 2004;92:187602.

    Article  Google Scholar 

  32. Edirisinghe PD, Moore JF, Skinner-Nemec KA. Detection of in situ derivatized peptides in microbial biofilms by laser desorption 7.87 eV postionizaton mass spectrometry. Anal Chem. 2007;79:508–14.

    Article  CAS  Google Scholar 

  33. Hanley L, Edirisinghe P, Calaway W, Veryovkin I, Pellin M, Moore J. 7.87 eV postionization of peptides containing tryptophan or derivatized with fluorescein. Appl Surf Sci. 2006;252:6723–6.

    Article  CAS  Google Scholar 

  34. Sabbah H, Pomerantz AE, Wagner M, Müllen K, Zare RN. Laser desorption single-photon ionization of asphaltenes: mass range, compound sensitivity, and matrix effects. Energ Fuels. 2012;26:3521–6.

    Article  CAS  Google Scholar 

  35. Lin S-P, Chu P-M, Tsai S-Y, Wu M-H, Hou Y-C. Pharmacokinetics and tissue distribution of resveratrol, emodin and their metabolites after intake of Polygonum cuspidatum in rats. J Ethnopharmacol. 2012;144:671–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China grants (nos. 21273083 and U1332132), and the Scientific and Technological Planning Project of Guangzhou City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Hu.

Ethics declarations

The studies were approved by the appropriate ethic committee and were performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hu, Y., Lu, Q. et al. Determination of proflavine in rat whole blood without sample pretreatment by laser desorption postionization mass spectrometry. Anal Bioanal Chem 409, 2813–2819 (2017). https://doi.org/10.1007/s00216-017-0225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0225-x

Keywords

Navigation